| 研究生: |
李家揚 Lee, Chia-Yang |
|---|---|
| 論文名稱: |
以分子動力學分析GaAs/Si層狀異質結構受到奈米壓痕作用所產生的變形及相變化行為 Study on deformation and phase transformation behavior of GaAs/Si layered heterostructures under nanoindentation by using Molecular Dynamics (MD) |
| 指導教授: |
陳鐵城
Chen, Tei-Chen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 132 |
| 中文關鍵詞: | MD 、分子動力學 、奈米壓痕 、GaAs薄膜 、Si基板 、基板效應 |
| 外文關鍵詞: | MD, GaAs film, Si substrate, effect of substrate, nanoindentation, Molecular Dynamics |
| 相關次數: | 點閱:128 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
矽(Si)基板與砷化鎵(GaAs)薄膜所構成的層狀異質結構,可以結合電子與光學元件的優點於單一系統內,但採用這種異質結構會間接導致元件內部產生大量缺陷,嚴重影響薄膜的品質與光電性能,因此元件中薄膜之機械性質量測顯得格外重要。本文即利用分子動力學(Molecular Dynamics, MD)模擬GaAs/Si結構之奈米壓痕(Nanoindentation)機制,藉以了解GaAs薄膜之機械特性。
經過模擬分析之後,發現GaAs薄膜之硬度與楊氏係數會隨著薄膜厚度的增加而降低;隨著壓痕深度的加深而變大,意即基板效應會隨著薄膜厚度增加而減小;隨著壓痕深度加深而變大,估計薄膜厚度須達奈米壓痕深度的10倍以上才能消除基板效應,隨後本文利用King的理論求得較接近薄膜真實的楊氏係數。而壓痕過程中薄膜由彈性變形轉變成塑性變形的Pop-in現象,在力量位移曲線中均能清楚的呈現出來。此外本文也在兩材料的介面處發現部分因差排而導致的滑移線,呈現出與現實相同的物理現象。
The layered heterostructure constructed by Si substrate and GaAs film can combine the benefits of electronic and optical components in one unit. But this heterostructure produces a large number of defects within the component indirectly. These defects often reduce the quality and optoelectronic efficiency of GaAs film seriously. So the measurement of GaAs film’s mechanical properties plays an important rule. This paper investigates the deformation and phase transformation behavior of GaAs/Si layered heterostructures under nanoindentation by using Molecular Dynamics (MD) to discuss the mechanical properties of GaAs film.
After the analysis, we can obtain that the hardness and Young’s modulus of GaAs film decrease with the thickness of GaAs film and increase with the indentation-depth. In other words, the effect of substrate decreases with the thickness of GaAs film and increases with the indentation-depth. We conclude that the effect of substrate will be reduced when the thickness of GaAs film becomes ten times greater than the indentation-depth. Then we introduce King’s analysis to estimate the true Young’s modulus of GaAs film and finally obtain approximate results. Besides, during indentation process, the force-displacement curve reveals the pop-in event clearly which corresponds to the elastic-to-plastic transition within GaAs film. Furthermore, we are able to observe dozens of slip lines caused by dislocation near the material interface which is familiar to the physic phenomena in the real case.
[1] N. A. El-Masry, J. C. L. Tarn and S. M. Bedair, “Combined Effect of Strained-Layer Superlattice and Annealing in Defect Reduction in GaAs Grownon Si Substrate”, Appl. Phys. Lett., Vol. 55, Issue 14, pp. 1442-1444, 1989.
[2] D. S. Seo, J. D. Park, J. G. McInerney, and M. Osiński, “Compound Cavity Modes in Semiconductor Lasers with Asymmetric Optical Feedback”, Appl. Phys. Lett., Vol. 54, Issue 11, pp. 990-992, 1989.
[3] J. P. van der Ziel, R. D. Dupuis, R. A. Logan, and C. J. Pinzone, “Degradation of GaAs Lasers Grown by Metalorganic Chemical Vapor Deposition on Si Substrates”, Appl. Phys. Lett., Vol. 51, Issue 2, pp. 89-91, 1989.
[4] J. N. Israelachvili, “Intermolecular and Surface Forces- with Applications to Colloidal and Biological Systems”, Academic press, 1985.
[5] J. H. Irving and J. G. Kirkwood, “The Statistical Mechanical Theory of Transport Processes. IV. The Equations of Hydrodynamics”, J. Chem. Phys., Vol. 18, No. 6, pp. 817-829, 1950.
[6] B. J. Alder and T. E. Wainwright, “Studies in Molecular Dynamics. I. General Method”, J. Chem. Phys., Vol. 31, No. 2, pp. 459-466, 1959.
[7] B. J. Alder and T. E. Wainwright, “Decay of the Velocity Autocorrelation Function”, Phys. Rev. A, Vol. 1, No. 1, pp. 18-21, 1970.
[8] G. Ciccotti and W. G. Hover, “Molecular Dynamics Simulation of Statistical Mechanics System,Amsterdam”, North Holland, 1986.
[9] M. P. Allen and D. J. Tildesley, “Compuetr Simulation of Liquids”, Oxford, Claredon, 1987.
[10] J. M. Hailie, “Molecular Dynamics Simulation Elementary Method”, New York : Wiley, 1993.
[11] L. Verlet, “Computer Experiments on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules”, Physical Review, Vol. 159, No. 1, pp. 98-103, 1967.
[12] B. Quentrec and C. Brot, “New Method for Searching for Neighbors in Molecular Dynamics Computations”, J. Comput. Phys., Vol. 13, No. 3, pp. 430-432, 1975.
[13] D. C. Rapaport, “Molecular-Dynamics Study of Rayleigh-Bénard Convection”, Layered cell link, Vol. 60, No. 24, pp. 2480-2483, 1988.
[14] G. S. Grest, B. Dünweg, and K. Kremer, “Vectorized Link Cell Fortran Code for Molecular Dynamics Simulations for a Large Number of Particles”, Comput. Phys. Commun., Vol. 55, No. 3, pp. 269-285, 1989.
[15] H. Hertz, “Über Die Berührung Fester Elastischer Körper”, Journal für die reine und angewandte Mathematik, Vol. 92, No. pp. 156-171, 1882.
[16] I. N. Sneddon, “The Relation Between Load and Penetration in the Axisymmetric Boussinesq Problem for a Punch of Arbitrary Profile”, Int. J. Eng. Sci., Vol. 3, No. 1, pp. 47-57, 1965.
[17] W. C. Oliver and G. M. Pharr, “An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments”, J. Mater. Res., Vol. 7, No. 6, pp. 1564-1583, 1992.
[18] J. Shimizu, H. Eda, M. Yoritsune, and E. Ohmura, “Molecular Dynamics Simulation of Friction on the Atomic Scale”, Nanotechnology, Vol. 9, No. 2, pp. 118-123, 1998.
[19] F. N. Dzegilenko, D. Srivastava, and S. Saini, “Nanoscale Etching and Indentation of a Silicon(001) Surface with Carbon Nanotube Tips", Nanotechnology, Vol. 11, No. 3, pp. 253-257, 1999.
[20] W. C. D. Cheong and L. C. Zhang, “Molecular Dynamics Simulation of Phase Transformations in Silicon Monocrystals Due to Nano-Indentation”, Nanotechnology, Vol. 11, pp. 173-180, 2000.
[21] C. Tromas, J. Colin, C. Coupeau, J. C. Girard, J. Woirgard, and J. Grilhé, “Pop-In Phenomenon During Nanoindentation in MgO”, Eur. Phys. J. Appl. Phys., Vol. 8, No. 2, pp. 123-128, 1999.
[22] C. Tromas, J. C. Girard, V. Audurier, and J. Woirgard, “Study of the Low Stress Plasticity in Single-Crystal MgO by Nanoindentation and Atomic force Microscopy”, J. Mater. Sci., Vol. 34, No. 21, pp. 5337-5342, 1999.
[23] Y. Gaillard, C. Tromas, and J. Woirgard, “Study of the Dislocation Structure Involved in a Nanoindentation Test by Atomic Force Microscopy and Controlled Chemical Etching”, Acta Mater., Vol. 51, No. 4, pp. 1059-1065, 2003.
[24] E. T. Lilleodden, J. A. Zimmerman, S. M. Foiles, and W. D. Nix, “Atomistic Simulations of Elastic Deformation and Dislocation Nucleation During Nanoindentation”, J. Mech. Phys. Solids, Vol. 51, No. 5, pp. 901-920, 2003.
[25] H. Y. Liang, C. H. Woo, H. Huang, A. H. W. Ngan, and T. X. Yu, “Dislocation Nucleation in the Initial Stage During Nanoindentation”, Philos. Mag., Vol. 83, No. 31-34, pp. 3609-3622, 2003.
[26] D. E. Kim and S. I. Oh, “Atomistic Simulation of Structural Phase Transformations in Monocrystalline Silicon Induced by Nanoindentation”, Nanotechnology, Vol. 17, No. 9, pp. 2259-2265, 2006.
[27] S. R. Jian, T. H. Fang, D. S. Chuu, L. W. Ji, “Atomistic Modeling of Dislocation Activity in Nanoindented GaAs”, Applied Surface Science, Vol. 253, pp. 833-840, 2006.
[28] D. Chrobak, K. Nordlund and R. Nowak, “Nondislocation Origin of GaAs Nanoindentation Pop-In Event”, PRL, Vol. 98, pp. 045502, 2007.
[29] Y.-H. Lin, T.-C. Chen, P.-F. Yang, S.-R. Jian, and Y.-S. Lai, “Atomic-Level Simulations of Nanoindentation-Induced Phase Transformation in Mono-Crystalline Silicon”, Appl. Surf. Sci., Vol. 254, No. 5, pp. 1415-1422, 2007.
[30] A. K. Bhattacharya, W. D. Nix, “Analysis of Elastic and Plastic Deformation Associated with Indentation Testing of Thin Films on Substrates”, J. Solids Struct., Vol. 24, Issue 12, pp. 1287-1298,1988.
[31] T. Ohmura, S. Matsuoka, K. Tanaka and T. Yoshida, “Nanoindentation Load–Displacement Behavior of Pure Face Centered Cubic Metal Thin Films on a Hard Substrate”, Thin Solid Films, Vol. 385, pp.198-204, 2001.
[32] R. Saha and W. D. Nix, “Effects of the Substrate on the Determination of Thin Film Mechanical Properties by Nanoindentation”, Acta Materialia, Vol.50, pp.23-38, 2002.
[33] D. J. Oliver, J. E. Bradby, J. S. Williams, M. V. Swain and P. Munroe, “Thickness-Dependent Phase Transformation in Nanoindented Germanium Thin Films”, Nanotechnology, Vol. 19, pp. 475709, 2008.
[34] J. E. Jones, “The Determination of Molecular Fields I. From the Variation of the Viscosity of a Gas with Temperature”, Proc. R. Soc. London, Ser. A, Vol. 106, No. 738, pp. 441-462, 1924.
[35] L. A. Girifalco and V. G. Weizer, “Application of the Morse Potential Function to Cubic Metals”, Phys. Rev. , Vol. 114, No. 3, pp. 687-690, 1959.
[36] S. M. Foiles, M. I. Baskes, and M. S. Daw, “Embedded-Atom Method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt and their alloys”, Phys. Rev. B, Vol. 33, No. 12, pp. 7983-7991, 1986.
[37] F. Cleri and V. Rosato, "Tight-Binding Potentials for Transition Metals and Alloys", Phys. Rev. B: Condens. Matter, Vol. 48, No. 1, pp. 22-33, 1993.
[38] J. Tersoff, ”New Empirical Model for the Structural Properties of Silicon”, Phys. Rev. Lett., Vol. 56, pp. 632-635, 1986
[39] J. Tersoff, ”New Empirical Approach for the Structure and Energy of Covalent Systems”, Phys. Rev. B, Vol. 37, pp. 6991-7000, 1988.
[40] J. Tersoff, ”Empirical Interatomic Potential for Silicon with Improved Elastic Properties”, Phys. Rev. B, Vol. 38, pp. 9902-9905, 1988.
[41] J. Tersoff, ”Empirical Interatomic Potential for Carbon, with Applications to Amorphous Carbon”, Phys. Rev. Lett., Vol. 61, pp. 2879-2882, 1988.
[42] J. Tersoff, ”Modeling solid-state chemistry: Interatomic Potentials for Multicomponent Systems”, Phys. Rev. B, Vol. 39, pp. 5566-5568, 1989.
[43] J. M. Hailie, “Molecular Dynamics Simulation Elementary Method”, New York: John Wiley & Sons. Inc., 1993.
[44] T. Iwaki, "Molecular Dynamic Study on Stress-Strain in Very Thin Film", JSME Int. J. Ser. A, Vol. 39, No. 3, pp. 346-353, 1988.
[45] 陳冠維, "掃描式探針顯微鏡摩擦力檢測應用於不鏽鋼氮離子植佈技術之建立及材料微奈米機械性質檢測", 國立成功大學, 碩士論文, 2003.
[46] R. B. King, Int. J. Solids Structure, “Elastic Analysis of Some Punch Problems for a Layered Medium”, Vol. 23, pp. 1657-1664, 1987.
[47] J. B. Pethicai, R. Hutchings, and W. C. Oliver, "Hardness Measurement at Penetration Depths as Small as 20 nm", Philos. Mag. A, Vol. 48, No. 4, pp. 593 – 606, 1983.
[48] D.L. Joslin and W.C. Oliver, “A New Method for Analyzing Data From Continuous Depth-Sensing Microindentation Tests”, J. Mater. Res.,Vol. 5, pp. 123–126, 1990.
[49] M. Nakamura, H. Fujioka, K. Ono, M. Takeuchi, T. Mitsui and M. Oshima “Molecular Dynamics Simulation of III–V Compound Semiconductor Growth with MBE”, Journal of Crystal Growth, Vol. 209, pp. 232-236, 2000.
[50] V. A. Skripnikov, Yu. P. Khukhryansky, V. A. Savchenko and A.V. Kartavykh, “The Influence of Local Order at a Crystal–Melt Interface on the AIIIBV Crystalgrowth”, Journal of Crystal Growth, Vol. 310, pp. 3512– 3516, 2008.
[51] J. C. Mauro and A. K. Varshneya, “Multiscale Modeling of Arsenic Selenide Glass”, Journal of Non-Crystalline Solids,Vol. 353, pp. 1226–1231, 2007.
[52] J. Li, K. J. V. Vliet, T. Zhu, S. Yip and S. Suresh, "Atomistic Mechanisms Governing Elastic Limit and Incipient Plasticity in Crystals", Nature, Vol. 418, No. 6895, pp. 307-310, 2002.
[53] T. H. Fang, C. I. Weng, and J. G. Chang, “Molecular Dynamics Analysis of Temperature Effects on Nanoindentation Measurement”, Mater. Sci. Eng., A, Vol. 357, No. 1-2, pp. 7-12, 2003.
[54] J. P. Rino, A. Chatterjee, I. Ebbsjo, R. K. Kalia, A. Nakano and F Shimojo, ”Pressure-Induced Structural Transformation in GaAs: A Molecular-Dynamics study”, Phys. Rev. B, Vol. 65, pp. 195206, 2002.
[55] J. S. Blakemore, ”Semiconducting and other Major Properties of Gallium Arsenide”, J. Appl. Phys., Vol. 53, R123, 1982.
[56] E. P. O’Reilly and J. Robertson, “Electronic Structure of Amorphous III-V and II-VI Compound Semiconductors and Their Defects”, Phys. Rev. B, Vol. 34, pp. 8684-8695, 1986.
[57] T. Ichikawa, “Electron Diffraction Study of the Local Atomic Arrangement in Amorphous Gallium films”, Phys. Status Solidi A, Vol. 19, pp.347-356, 1973.
[58] B. D. Sharma and J. Donohue, Z. Kristallogr, Vol. 177, pp. 293, 1962.
[59] G. N. Greaves, S. R. Elliott and E. A. Davis, “Amorphous Arsenic”, Adv. Phys., Vol. 28, pp. 49-141, 1979.
[60] M. C. Ridgway, C. J. Glover, G. J. Foran and K. M. Yu, “Characterization of the Local Structure of Amorphous GaAs Produced by Ion Implantation”, J. Appl. Phys., Vol. 83, pp. 4610-4614, 1998.
[61] S. E. Grillo, M. Ducarroir, M. Nadal, E. Tournie’ and J-P Faurie, “Nanoindentation of Si, GaP, GaAs and ZnSe Single Crystals”, J. Phys. D: Appl. Phys., Vol. 36, pp. L5–L9, 2003.
[62] 徐文君, “以CGMD探討奈米壓痕下微觀銅結構的機械性質和力學行為”, 國立成功大學, 碩士論文, 2008.
[63] 王恆杰, “修正勢能函數式CGMD在奈米壓痕的應用”, 國立成功大學, 碩士論文, 2007.
[64] M. F. Doerner, D. S. Gardner and W. D. Nix, “Plastic Properties of Thin Films on Substrates as Measured by Submicron Indentation Hardness and Substrate Curvature Techniques”, J. Mater. Res., Vol. 1, pp. 845-851, 1986.
[65] R. B. King, “Elastic Analysis of Some Punch Problems for a Layered Medium”, Int. J. Solids Struct., Vol. 23, pp. 1657-1664, 1987.