簡易檢索 / 詳目顯示

研究生: 許均豪
Hsu, Chun-Hao
論文名稱: 三軸機構耦合螺桿系統之建模與控制
Modeling and Control of a Triple Mechanically-Coupled Ball Screws System
指導教授: 謝旻甫
Hsieh, Min-Fu
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 82
中文關鍵詞: 同動控制系統鑑別機構耦合螺桿同動平台
外文關鍵詞: synchronous control, system identification, mechanical coupling, ball screw synchronous platform
相關次數: 點閱:80下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來工具機之技術水準已被視為國家生產力和工業實力的重要
    指標,而未來製造業發展趨勢將以高產能、高效率與高精度為主
    ,故如何提高加工速度與精度已成為產業之重要考量因素。而隨
    著產品加工或檢測面積的擴大,其設備尺寸亦不斷的變長,為增
    加工具機之剛性及穩定度,具多組馬達驅動之機構(如龍門式平
    台)被廣泛地應用在自動工業或電子等精密加工上。此外,某些
    設備需要大推力或大功率輸出(例如全電式射出成型機),可利用
    多組馬達共同出力來達成,以降低單顆馬達所需功率。然而此架
    構在控制上需克服此多組平行馬達之同步問題,除了精度上的考
    量之外,亦須避免因非同步所帶來的潛在機構破壞之危險。國內
    外之研究大多針對雙軸之具機構耦合系統,建立雙軸耦合同動之
    模型並設計控制器來增加系統之剛性及降低誤差,鮮少針對三軸
    以上之具機構耦合系統做探討。本論文針對一三軸機構耦合螺桿
    系統,推導其數學模型並提出ㄧ耦合鑑別方法,以找出近似之數
    學模型,做為控制器設計及系統模擬之用。本論文針對不同之主
    動軸位置提出不同之同動控制補償架構,並針對各同動架構之精
    度及延伸性上做一比較,以找出最適合本論文之同動架構。而三
    軸同動系統為ㄧ具機構耦合系統,故各軸會受相鄰兩軸之影響,
    此一影響因素在探討同動架構補償架構時,亦會被考慮在其中。
    在位置、速度的控制迴路上選擇適當的控制架構以降低系統誤
    差。基於系統複雜度之故,在同動控制器參數設計上採用基因演
    算法來求出系統之最佳參數,並藉由適當之適應函數選擇來驗證
    本論文所提出之三軸同動架構,最後透過實驗來驗證本論文所提
    出之控制架構及控制器設計。

    In recent years, the developments of high-performance CNC
    machines have attracted significant attention from the
    industry. The need for the high performance feed drive
    systems in manufacturing industries comes from the demand
    for higher productivity. How to increase the speed and
    precision becomes an important issue in the manufacturing
    technology. For some applications where handling of large
    size material requires high precision, multiple feed
    drives in high synchronization may also be necessary.
    Also, using a set of parallel motors/ball screws to
    jointly drive a system is a solution for ultra-high
    thrust requirement (e.g., all-electric injection
    molding machine). However, in such a configuration,
    significant non-synchronization or control failure can
    cause damage to the system. Therefore, appropriate
    synchronous control techniques are demanded to reduce
    such errors, achieve satisfying accuracy and reduce
    potential hazards. Past relevant research mostly focused
    on modeling and control of systems with dual parallel
    motors/ball screws and their control design to reduce
    the synchronization error. However, there is a lack of
    research dealing with the mathematical modeling of three
    or more motor synchronous systems.This thesis presents a
    single-axis feed-drive that is jointly driven by three ball
    screw/servomotor units. The triple-motor synchronous
    system has one master and two slaves, and thus the
    coupling effects among these motors/ball screws
    require a more rigorous investigation. In order
    to understand the interaction among these ball screws
    via the mechanical coupling, a system identification
    method is proposed to obtain the model of the entire
    coupled system with triple motors/ball screws. Three
    synchronous control schemes are proposed and tested
    in this thesis. An appropriate control scheme is
    suggested and the servo controller is designed to reduce
    the position error. Because of the complexity of the
    triple-axis system, the genetic algorithm is used to
    design a synchronous controller for the investigated
    system. The synchronous controller is used to reduce
    both position tracking error and synchronous error.
    The performance of the investigated system is
    experimentally verified.

    中文摘要..............................................I Abstract ........................................... II 致謝................................................ IV Contents..............................................V List of Tables......................................VII List of Figures ...................................VIII Nomenclature........................................ XI Chapter 1 Introduction ...............................1 1.1 Introduction .................................... 1 1.2 Literature Review ............................... 4 1.3 Research Motivation and Objective .............. 10 1.4 Overview of the Thesis...........................11 Chapter 2 System Modeling and Identification.........12 2.1 System Structure................................ 12 2.2 Description of Relative Software and Hardware... 13 2.3 System Modeling................................. 16 2.3.1 Single Ball Screw Platform Modeling .......... 16 2.3.2 Modeling of Triple-axis Ball Screw System..... 20 2.4 System Identification........................... 24 2.4.1 Identification of Individual Unit ............ 26 2.4.2 Identification of Coupling.................... 28 Chapter 3 Control Structure Analysis and Simulation .38 3.1 S-curve Command Design.......................... 38 3.2 Control Structure Analysis...................... 39 3.2.1 Synchronous Compensation Effects ............. 40 3.2.2 Master-Sided Master/Slave Synchronous Control. 44 3.3 Conclusions and Extension....................... 51 Chapter 4 Servo Loop Design..........................52 4.1 Servo Controller Design ........................ 53 4.1.1 Velocity Command Controller Design............ 53 4.1.2 Position Controller Design.................... 55 4.1.3 Torque Command Regulator Design for Slaves ... 56 4.2 Synchronous Controller Design................... 57 4.2.1 Genetic Algorithm............................. 57 4.2.2 Synchronous Controller Design................. 60 Chapter 5 Experimental Results ......................63 5.1 Comparison of Control Schemes................... 63 5.1.1 Test on Uncoupled Model ...................... 65 5.1.2 Test on Mechanically Coupled Model ........... 66 5.2 Continuous S-curve Command Experimental Results 71 5.2.1 Low Speed S-curve Motion Command.............. 71 5.2.2 High Speed S-curve Motion Command............. 74 5.3 Conclusions .................................... 76 Chapter 6 Conclusions and Recommendations ...........77 6.1 Conclusions .................................... 77 6.2 Recommendations ................................ 78 References ..........................................79

    [1] D. M. Alter, T. C. Tsao, “Optimal feedforward
    tracking control of linear motors for machine
    tool drives,” American Control Conference,
    vol. 1, pp. 210-214,1995.
    [2] Y. B. Bang and S. Ito, “Linear motor drive
    ultrahigh-speed injection moldings machine”,
    Proceedings of the I MECH E Part B - Journal of
    Engineering Manufacture, vol. 216, no. 5,
    pp. 773-781, 2002.
    [3] C. R. Chiang, Control Design of a Stage Equipped
    with Dual Parallel Ball Screws Coupled Mechanically,
    Master thesis, National Cheng Kung University,
    Taiwan, 2007.
    [4] Y. F. Ciou, The Study on Command and Friction
    Disturbance Feed Forward Control for Machine Tools,
    Master thesis, National Cheng Kung University,Taiwan
    [5] G. Ellis, “PDFF: An Evaluation of a Velocity Loop
    Control Method”,PCIM-Europe, 1999.
    [6] G. Ellis, Control System Design Guide, Academic Press,
    San Diego, 2004.
    [7] L. Feng, Y. Koren, J. Borenstein, “Cross-coupling
    motion controller for mobile robots”, IEEE Control
    Systems Magazine, vol. 13, pp. 36-43, 1993.
    [8] D. Forrest, Agilent 35670A Supplemental Operator’s
    Guide, Agilent Technologies,2000.
    [9] FANUC, Parameter Manual of a-series AC Servo Motor,
    FANUC, 1994.
    [10] I. Gustavsson, L. Ljung, and T. Soederstroem,
    "Identification of processes in closed loop –
    identifiably and accuracy aspects,"Automatica,
    vol. 13, pp.59-75,1977.
    [11] D. E. Goldberg, Genetic algorithms in search,
    optimization, and machine learning. Addison-Wesley,
    Massachusetts, 1989.
    [12] http://www.auo.com.tw/
    [13] http://zone.ni.com/devzone/cda/tut/p/id/7338#toc0
    [14] M. F. Hsieh, W. S. Yao and C. R. Chiang, “Modeling
    and synchronous control of a single-axis stage driven
    by dual mechanically-coupled parallel ball screws,”
    The International Journal of Advance Manufacture
    Technology, vol. 34, no. 9-10, pp.933-943, 2007.
    [15] M. F. Hsieh, C. J. Tung, W. S. Yao, and M. C. Wu,"
    Servo design of a vertical axis drive using dual
    linear motors for high speed electric discharge
    machining",International Journal of Machine Tools
    and Manufacture, vol. 47, no. 3-4, pp.546-554, 2007
    [16] M. F. Hsieh, W. S. Yao and S. H. Wang, “A dual
    linear motor servo system for injection molding”
    Conference Proceedings of Society of Manufacturing
    Engineers, 2008.
    [17] J. H. Holland, Adaptation in natural and artificial
    systems, The University of Michigan Press, Michigan,
    1975.
    [18] M. J. Jang, K. C. Lin and C. L. Chen, “Modeling
    and positioning control of a ball screw driven
    stage,"IEEE Networking Sensing and Control
    International Conference, vol. 2, pp. 943-948, 2004.
    [19] J. Jensen, Rotor Dynamics Measurement Techniques,
    Agilent Technologies, 2000.
    [20] S. K. Jeong and S. S. You, “Precise position
    synchronous control of multi-axis servo system",
    Mechatronics, vol. 18, pp. 129-140, 2008.
    [21] M. S. Kim and S. C. Chung, “A systematic approach
    to design high-performance feed drive systems,”
    International Journal of Machine Tools and
    Manufacture,vol. 45, pp. 1421-1435, 2005.
    [22] I. Kollar, Frequency Domain Identification Toolbox-
    For use with MATLAB, The MATH WORKS Inc., 1994.
    [23] Y. Koren, “Cross-coupled biaxial computer
    control for manufacturing systems”,Journal of
    Dynamic Systems, Measurement, and Control, vol.102,
    pp. 265-272,1980.
    [24] R. D. Lorenz and P. B. Schmidt, “Synchronized motion
    control for process automation”, Proceedings of the
    IEEE Industry Applications Annual Meeting, vol.2,
    pp. 1693-1698, 1989.
    [25] S. H. Lee and J. B. Song, “Acceleration estimator
    for a low-velocity and low-acceleration regions
    based on encoder position data”, IEEE/ASME
    Transactions on Mechatronics, vol. 6, pp. 58-64, 2001.
    [26] B. T. Nohara, I. Yamamoto, and M. Matsuura, “The
    organized motion control of multi-directional wave
    maker”, Proceedings of the Advanced Motion Control,
    vol.2, pp. 470 - 475, 1996.
    [27] H. K. Park, S. S. Kim, J. M. Park, T. Y. Cho, and
    D. Hong,"Dynamics of dual-drive servo mechanism,”
    IEEE International Symposium on Industrial
    Electronics, vol. 3, pp. 1996-2000, 2001.
    [28] SIEMENS, 840D/FM-NC Description of Functions, Special
    Functions (Part 3),SIEMENS, 1999.
    [29] M. C. Wu, An Investigation on Synchronous Control of
    Linear Servo System,Master thesis, National Cheng
    Kung University, Taiwan, 2007.
    [30] S. H. Wang, Application of Linear Motor Synchronous
    Control to All-Electric Injection Molding Machine,
    Master thesis, National Cheng Kung University,
    Taiwan, 2007.
    [31] J. X. Yang, The identification and control of a twin
    linear servo system with mechanical coupling, Master
    thesis, National Cheng Kung University,Taiwan,2003.
    [32] W. S. Yao, Design of Linear Servo Systems for High
    Speed Machine Tools, PhD dissertation, National Cheng
    Kung University, Taiwan, 2002.

    下載圖示 校內:2010-09-09公開
    校外:2010-09-09公開
    QR CODE