| 研究生: |
許均豪 Hsu, Chun-Hao |
|---|---|
| 論文名稱: |
三軸機構耦合螺桿系統之建模與控制 Modeling and Control of a Triple Mechanically-Coupled Ball Screws System |
| 指導教授: |
謝旻甫
Hsieh, Min-Fu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 同動控制 、系統鑑別 、機構耦合 、螺桿同動平台 |
| 外文關鍵詞: | synchronous control, system identification, mechanical coupling, ball screw synchronous platform |
| 相關次數: | 點閱:80 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來工具機之技術水準已被視為國家生產力和工業實力的重要
指標,而未來製造業發展趨勢將以高產能、高效率與高精度為主
,故如何提高加工速度與精度已成為產業之重要考量因素。而隨
著產品加工或檢測面積的擴大,其設備尺寸亦不斷的變長,為增
加工具機之剛性及穩定度,具多組馬達驅動之機構(如龍門式平
台)被廣泛地應用在自動工業或電子等精密加工上。此外,某些
設備需要大推力或大功率輸出(例如全電式射出成型機),可利用
多組馬達共同出力來達成,以降低單顆馬達所需功率。然而此架
構在控制上需克服此多組平行馬達之同步問題,除了精度上的考
量之外,亦須避免因非同步所帶來的潛在機構破壞之危險。國內
外之研究大多針對雙軸之具機構耦合系統,建立雙軸耦合同動之
模型並設計控制器來增加系統之剛性及降低誤差,鮮少針對三軸
以上之具機構耦合系統做探討。本論文針對一三軸機構耦合螺桿
系統,推導其數學模型並提出ㄧ耦合鑑別方法,以找出近似之數
學模型,做為控制器設計及系統模擬之用。本論文針對不同之主
動軸位置提出不同之同動控制補償架構,並針對各同動架構之精
度及延伸性上做一比較,以找出最適合本論文之同動架構。而三
軸同動系統為ㄧ具機構耦合系統,故各軸會受相鄰兩軸之影響,
此一影響因素在探討同動架構補償架構時,亦會被考慮在其中。
在位置、速度的控制迴路上選擇適當的控制架構以降低系統誤
差。基於系統複雜度之故,在同動控制器參數設計上採用基因演
算法來求出系統之最佳參數,並藉由適當之適應函數選擇來驗證
本論文所提出之三軸同動架構,最後透過實驗來驗證本論文所提
出之控制架構及控制器設計。
In recent years, the developments of high-performance CNC
machines have attracted significant attention from the
industry. The need for the high performance feed drive
systems in manufacturing industries comes from the demand
for higher productivity. How to increase the speed and
precision becomes an important issue in the manufacturing
technology. For some applications where handling of large
size material requires high precision, multiple feed
drives in high synchronization may also be necessary.
Also, using a set of parallel motors/ball screws to
jointly drive a system is a solution for ultra-high
thrust requirement (e.g., all-electric injection
molding machine). However, in such a configuration,
significant non-synchronization or control failure can
cause damage to the system. Therefore, appropriate
synchronous control techniques are demanded to reduce
such errors, achieve satisfying accuracy and reduce
potential hazards. Past relevant research mostly focused
on modeling and control of systems with dual parallel
motors/ball screws and their control design to reduce
the synchronization error. However, there is a lack of
research dealing with the mathematical modeling of three
or more motor synchronous systems.This thesis presents a
single-axis feed-drive that is jointly driven by three ball
screw/servomotor units. The triple-motor synchronous
system has one master and two slaves, and thus the
coupling effects among these motors/ball screws
require a more rigorous investigation. In order
to understand the interaction among these ball screws
via the mechanical coupling, a system identification
method is proposed to obtain the model of the entire
coupled system with triple motors/ball screws. Three
synchronous control schemes are proposed and tested
in this thesis. An appropriate control scheme is
suggested and the servo controller is designed to reduce
the position error. Because of the complexity of the
triple-axis system, the genetic algorithm is used to
design a synchronous controller for the investigated
system. The synchronous controller is used to reduce
both position tracking error and synchronous error.
The performance of the investigated system is
experimentally verified.
[1] D. M. Alter, T. C. Tsao, “Optimal feedforward
tracking control of linear motors for machine
tool drives,” American Control Conference,
vol. 1, pp. 210-214,1995.
[2] Y. B. Bang and S. Ito, “Linear motor drive
ultrahigh-speed injection moldings machine”,
Proceedings of the I MECH E Part B - Journal of
Engineering Manufacture, vol. 216, no. 5,
pp. 773-781, 2002.
[3] C. R. Chiang, Control Design of a Stage Equipped
with Dual Parallel Ball Screws Coupled Mechanically,
Master thesis, National Cheng Kung University,
Taiwan, 2007.
[4] Y. F. Ciou, The Study on Command and Friction
Disturbance Feed Forward Control for Machine Tools,
Master thesis, National Cheng Kung University,Taiwan
[5] G. Ellis, “PDFF: An Evaluation of a Velocity Loop
Control Method”,PCIM-Europe, 1999.
[6] G. Ellis, Control System Design Guide, Academic Press,
San Diego, 2004.
[7] L. Feng, Y. Koren, J. Borenstein, “Cross-coupling
motion controller for mobile robots”, IEEE Control
Systems Magazine, vol. 13, pp. 36-43, 1993.
[8] D. Forrest, Agilent 35670A Supplemental Operator’s
Guide, Agilent Technologies,2000.
[9] FANUC, Parameter Manual of a-series AC Servo Motor,
FANUC, 1994.
[10] I. Gustavsson, L. Ljung, and T. Soederstroem,
"Identification of processes in closed loop –
identifiably and accuracy aspects,"Automatica,
vol. 13, pp.59-75,1977.
[11] D. E. Goldberg, Genetic algorithms in search,
optimization, and machine learning. Addison-Wesley,
Massachusetts, 1989.
[12] http://www.auo.com.tw/
[13] http://zone.ni.com/devzone/cda/tut/p/id/7338#toc0
[14] M. F. Hsieh, W. S. Yao and C. R. Chiang, “Modeling
and synchronous control of a single-axis stage driven
by dual mechanically-coupled parallel ball screws,”
The International Journal of Advance Manufacture
Technology, vol. 34, no. 9-10, pp.933-943, 2007.
[15] M. F. Hsieh, C. J. Tung, W. S. Yao, and M. C. Wu,"
Servo design of a vertical axis drive using dual
linear motors for high speed electric discharge
machining",International Journal of Machine Tools
and Manufacture, vol. 47, no. 3-4, pp.546-554, 2007
[16] M. F. Hsieh, W. S. Yao and S. H. Wang, “A dual
linear motor servo system for injection molding”
Conference Proceedings of Society of Manufacturing
Engineers, 2008.
[17] J. H. Holland, Adaptation in natural and artificial
systems, The University of Michigan Press, Michigan,
1975.
[18] M. J. Jang, K. C. Lin and C. L. Chen, “Modeling
and positioning control of a ball screw driven
stage,"IEEE Networking Sensing and Control
International Conference, vol. 2, pp. 943-948, 2004.
[19] J. Jensen, Rotor Dynamics Measurement Techniques,
Agilent Technologies, 2000.
[20] S. K. Jeong and S. S. You, “Precise position
synchronous control of multi-axis servo system",
Mechatronics, vol. 18, pp. 129-140, 2008.
[21] M. S. Kim and S. C. Chung, “A systematic approach
to design high-performance feed drive systems,”
International Journal of Machine Tools and
Manufacture,vol. 45, pp. 1421-1435, 2005.
[22] I. Kollar, Frequency Domain Identification Toolbox-
For use with MATLAB, The MATH WORKS Inc., 1994.
[23] Y. Koren, “Cross-coupled biaxial computer
control for manufacturing systems”,Journal of
Dynamic Systems, Measurement, and Control, vol.102,
pp. 265-272,1980.
[24] R. D. Lorenz and P. B. Schmidt, “Synchronized motion
control for process automation”, Proceedings of the
IEEE Industry Applications Annual Meeting, vol.2,
pp. 1693-1698, 1989.
[25] S. H. Lee and J. B. Song, “Acceleration estimator
for a low-velocity and low-acceleration regions
based on encoder position data”, IEEE/ASME
Transactions on Mechatronics, vol. 6, pp. 58-64, 2001.
[26] B. T. Nohara, I. Yamamoto, and M. Matsuura, “The
organized motion control of multi-directional wave
maker”, Proceedings of the Advanced Motion Control,
vol.2, pp. 470 - 475, 1996.
[27] H. K. Park, S. S. Kim, J. M. Park, T. Y. Cho, and
D. Hong,"Dynamics of dual-drive servo mechanism,”
IEEE International Symposium on Industrial
Electronics, vol. 3, pp. 1996-2000, 2001.
[28] SIEMENS, 840D/FM-NC Description of Functions, Special
Functions (Part 3),SIEMENS, 1999.
[29] M. C. Wu, An Investigation on Synchronous Control of
Linear Servo System,Master thesis, National Cheng
Kung University, Taiwan, 2007.
[30] S. H. Wang, Application of Linear Motor Synchronous
Control to All-Electric Injection Molding Machine,
Master thesis, National Cheng Kung University,
Taiwan, 2007.
[31] J. X. Yang, The identification and control of a twin
linear servo system with mechanical coupling, Master
thesis, National Cheng Kung University,Taiwan,2003.
[32] W. S. Yao, Design of Linear Servo Systems for High
Speed Machine Tools, PhD dissertation, National Cheng
Kung University, Taiwan, 2002.