| 研究生: |
林純玄 Lin, Chun-Hsun |
|---|---|
| 論文名稱: |
反脈動左心室輔助器之離體測試 In-Vitro Test of Counter-pulsation Left Ventricle Assist Device |
| 指導教授: |
陸鵬舉
Lu, P. J. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 左心室輔助器 |
| 外文關鍵詞: | LVAD |
| 相關次數: | 點閱:47 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
I
中文摘要
題目:反脈動左心室輔助器之離體測試
研究生:林純玄
指導教授:陸鵬舉
本研究主要目的是藉由建造一模擬人體循環系統流路之測試平
台,以協助反脈動左心室輔助器(Counter-Pulsation Left Ventricular
Assist Device)的性能評估及設計修正。本文依據血液動力學分析方法
與Windkessel 模式設計循環測試台, 經由測試台上之阻抗
(Resistance)、順容(Compliance)及慣性項(Inertance)各個參數的調變,
分別模擬健康與心衰竭人體之血液循環及血動力特性,並藉由反脈動
左心室輔助器的輔助,觀察其對心衰竭情況下之人體循環輔助效果。
在實驗中發現於心衰竭狀態下使用40 與60 毫升血泵,對心搏量
(Cardiac Output)的增加約在11%~18%之間,然而增加血泵容量並不
一定能有效提升心搏量的輸出。此外,本輔助器所產生的收縮卸載
(Systolic Unloading)功能,在相位差(Phase) 108 ~ 162 之間隨著心跳頻
率的增加,主動脈舒張終端壓力變化量(ΔEDAP)會隨之下降,顯示
對主動脈壓力提供了卸載之效果;對於舒張強化現象(Diastolic
Augmentation),則在相位差(Phase) 108 ~ 252 之間隨著心跳頻率的增
加而提升,且反脈動左心室輔助器對舒張強化的輔助效果,並不隨著
相位的差異而有所改變。
In-Vitro Test of Counter-Pulsation
Left Ventricle Assist Device
Student: Chun-Hsun Lin
Advisor: Pong-Jeu Lu
Abstract
A mock circulation test rig is constructed presently, which aims to
help the design improvement and performance evaluation of a
counter-pulsation left ventricular assist device (LVAD). This test rig is
designed according to the cardiovascular hemodynamics and the
Windkessel model. By adjusting the resistance, compliance and the
inertance of the constituent components, the circulation pertaining to
healthy and heart failure conditions was simulated. Counter-pulsation
circulation support under heart failure condition was simulated and
evaluated using this mock circulation test rig. Both 40 and 60 c.c. blood
pumps were adopted. It was observed that cardiac output was elevated
11~18%, however, larger blood pump volume does not offer appreciably
better cardiac output enhancement. Systolic unloading effect was found
in the present counter-pulsation LVAD support, which is manifested by
the end diastolic arterial pressure drop, in particular in the phase range of
108~162 degree. Diastolic augmentation was also presented, which
shows an increasingly enhanced trend in the phase range of 108~252
degree. Moreover, contrary to the conventional intra-aortic balloon
pump, the present counter-pulsation LVAD provides effective diastolic
augmentation uniformly over the entire phase range.
28
參考文獻
[1]Bowles, C. T., Shah, S. S., Nishimura, K., and Clark, C.,
“Development of Mock Circulation Models for the Assessment of
Counterpulsation Systems,” Cardiovascular Research, Vol. 25, 1991, pp.
901-908.
[2]Cornhill, J. F., and Phil, D., “An Aortic Left Ventricular Pulse
Duplicator Used In Testing Prosthetic Aortic Heart Valves,” The Journal
of Thoracic and Cardiovascular Surgery, Vol. 73, No. 4, 1977, pp.
550-558.
[3]Daniel, J. G., and Mehmet, C. O., “Cardiac Assist Devices,”
Columbia Presbyterian Medical Center, 2000.
[4]Daniel, T., Mark, H., Keith, M., and Andrew, G., “A Complete Mock
Circulation Loop for the Evaluation of Left, Right, and Biventricular Assist
Devices,” The International Journal of Artificial Organs, Vol. 29, 2005, pp.
564-572.
[5]Ferrari, G., Lazzari, C., and Kozarski, M., “A Hybrid Mock Circulatory
System: Testing a Prototype under Physiologic and Pathological
Conditions,” ASAIO Journal, Vol. 48, 2002, pp. 487-494.
[6]George, M. P., Koeing, S. C., Kevin, J. G., Dan, L. E., Kenneth, N. L.,
and Steven, W. E., “Hemodynamic and Pressure-volume Responses to
Continuous and Pulsatile Ventricular Assist in an Adult Mock
Circulation,” ASAIO Journal, Vol. 50, 2004, pp. 15-24.
29
[7] George, M. P., Koeing, S. C., Kevin, J. G., Dan, L. E., Kenneth, N. L.,
and Steven, W. E., “Characterization of an Adult Mock Circulation for
Testing Cardiac Support Devices,” ASAIO Journal, Vol. 50, 2004, pp.
37-46.
[8]Jurgen, W., Daniel, B., and Martin, H., “Simulation and Prediction
of Cardiotherapeutical Phenomena from a Pulsatile Model Coupled to the
Guyton Circulatory Model,” IEEE Transaction on Biomedical
Engineering, Vol. 49, No. 5, 2002, pp. 430-439.
[9]John, N. N., Christos, T. L., Christos, E. C., Serafim, N. N., Zafiria, J.
M., Emmanuel, V. A., and Spyridon, D. M., “A Valveless High Stroke
Volume Counterpulsation Device Restores Hemodynamics in Patients
with Congestive Heart Failure and Intractable Cardiogenic Shock
Awaiting Heart Transplantation,” Journal of Thoracic Cardiovascular
Surgery, Vol. 111, 1996, pp. 55-61.
[10]Knierbein, B., Reul, H., Eilers, R., Lange, M., KauFmann, R., and
Rau, G., “Compact Mock Loops of the Systemic and Pulmonary
Circulation for Blood Pump Testing,” The International of Journal
Artificial Organs, Vol. 15, 1992, pp. 40-48.
[11]Kiichi, S., Lowell, M., Hiroyuki, S., and Kenji, S., “Cardiac
Contraction and the Pressure-Volume Relationship, ” Oxford University
Press, 1988.
[12]Keith, S. M., and Dharmalingam, K., “Development of a Hydraulic
Model of the Human Systemic Circulation,” ASAIO Journal, Vol. 45,
30
1999, pp. 535-540.
[13]Lazzari, C., Darowski, M., Ferrari, G., Clemente, F., and Guaragno,
M., “Computer Simulation of Haemodynamic Parameters Changes with
Left Ventricle Assist Device and Mechanical Ventilation,” Computers in
Biology and Medicine, Vol. 30, 2000, pp. 55-69.
[14]Milnor, W. R., “Hemodynamics,” Maryland The Johns Hopkins
University, 1989.
[15]Rosenberg, G., Winfred, M. P., Donald, L. L., and William, S. P.,
“Design and Evaluation of the Pennsylvania State University Mock
Circulatory System,” ASAIO Journal, Vol. 4, 1981, pp. 41-49.
[16]Stergiopulos, N., Meister, J. J., and Westerhof, N., “Evaluation of
Method for Estimation of Total Arterial Compliance,” American Journal
of Physiology, Vol. 268, 1995, pp. H1540-H1548.
[17]Stergiopulos, N., Westerhof, B. E., and Westerhof, N., “Total
Arterial Inertance as the Fourth Element of the Windkessel Model,”
American Journal of Physiology, Vol. 276, 1999, pp. H81-H88.
[18]Stewart, J. W., Keith., S. M., and George, M. P., ”Compact
Compliance Chamber Design for the Study of Cardiac Performance in
Microgravity,” ASAIO Journal, Vol. 43, 1997, pp. 316-320.
[19]Serafim, N. N., John, N. N., Christos, E. C., Alexandros, G.,
Konstantinos, M., and John, C., “High Stroke Volume Para-Aortic
Counterpulsation Device Versus Centrifugal Pump in Cardiogenic Shock:
31
Experimental Study,” Journal of Surgery, Vol. 21, 1997, pp. 318-322.
[20]Westerhof, N., Elzinga, G., and Sipkema, P., “An Artificial Arterial
System for Pumping Hearts,” Journal of Applied Physiology, Vol. 31,
Nov. 1971, pp. 776 -781.
[21]Yingjie, L., Paul, A., Houston, W., and Don, O., “Design and Initial
Testing of a Mock Human Circulatory Loop for Left Ventricular Assist
Device Performance Testing,” The International Journal of Artificial
Organs, Vol. 29, 2005, pp. 341-345.
[22]Zhaorong, Liu., Kenneth,p. B., and Frank, C. P., “Estimatiom of
Total Arterial Compliance: Improved Method and Evaluation of Current
Methods,” American Journal of Physiology, Vol. 251, 1986, pp.
H588-H600.
[23]Frank, O., “Die Groundform Des Arteriellen Pulse,” Erste
Abhandlung. Mathematische Analyse. Z. Biol 37, 1899, pp. 483-526
[24]洪瑞鴻等, “鳳凰七號人工心臟控制器使用說明書,” 1999.
[25]陳瑞龍, “聚氨酯人工心瓣之製作與性能評估,"成功大學航空
太空工程研究所論文, 2003.
[26]梁逸挺, “脈動複製器之設計、製造與測試,” 成功大學航空太空
工程研究所論文, 2004.