簡易檢索 / 詳目顯示

研究生: 黃幸惠
Huang, Shin-Whei
論文名稱: 細胞自噬參與宿主體內對抗膜穿孔毒素的毒殺作用
Activation of autophagy is required for intrinsic cellular defense against bacterial pore-forming toxin in vivo
指導教授: 陳昌熙
Chen, Chang-Shi
學位類別: 碩士
Master
系所名稱: 醫學院 - 生物化學暨分子生物學研究所
Department of Biochemistry and Molecular Biology
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 77
中文關鍵詞: 細胞自嗜穿孔毒素
外文關鍵詞: autophagy, pore-forming toxin
相關次數: 點閱:71下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 細胞自噬是演化上具有高度保留的機制,其主要透過細胞自嗜體與溶脢體以分解散布在細胞質的細胞物質。在過去體外細胞培養系統之實驗中指出,宿主細胞會藉由細胞自嗜去調控其對細菌穿孔毒素的感受性,但目前仍未有於個體層級去研究細胞自嗜對於穿孔毒素所扮演的角色。此外,究竟細胞自嗜是如何被穿孔毒素所活化仍然尚未被研究。穿孔毒素藉由在宿主的細胞膜形成孔洞來毒殺宿主細胞,並且穿孔毒素也是許多人類病原菌的重要毒理因子。Cry5B是一種由Bacillus thuringiensis所產生的晶體穿孔毒素之一,其會專一性的毒殺線蟲類。由先前的Cry5B與線蟲交互作用的基因體轉錄分析研究中,我們發現當給予線蟲Cry5B後,線蟲體內的細胞自嗜相關基因會有轉錄上調的情形。本研究利用基因突變及RNA干擾的方式去降低細胞自嗜作用,發現此類操作會提高線蟲會對於Cry5B的感受性;相反地,分別利用遺傳及藥理學的方式去誘導細胞自嗜的發生,則可提高線蟲對Cry5B毒殺作用的抗性。此外,我們在利用紅色染劑若丹明去標定Cry5B的共厄焦實驗中也證明若丹明標定的穿孔毒素的訊號與細胞自嗜體的生物標識蛋白LGG-1會被引導於相同的三度空間中,這暗示了Cry5B可能會經由細胞自嗜體而降解。綜合以上的結果我們證實了當線蟲受到Cry5B穿孔毒素攻擊時,體內的細胞自嗜會被誘導並且作為保護線蟲免於穿孔毒素的毒殺的重要防禦機制。

    Autophagy is an evolutionarily conserved intracellular system for the degradation of cellular components in the cytoplasm through an autophagosomal-lysosomal pathway. It has been reported that autophagy plays roles in controlling the susceptibility of cultured cells to bacterial pore-forming toxins (PFTs), but less is known about its role at the organismal level. Moreover, how autophagy is induced by pore-forming toxins remains largely understudied. PFTs perforate the plasma membrane of host cells and contribute to and sometimes are essential for bacterial pathogenesis. Cry5B, a member of the Crystal pore-forming toxin family produced by Bacillus thuringiensis, intoxicates and kills nematodes, including Caenorhabditis elegans. Previous transcriptomic analyses of the Cry5B-C. elegans interaction showed that the transcriptions of several autophagy-related genes are significantly upregulated by Cry5B in C. elegans. Here, we showed that down-regulation of autophagy through mutation or RNA interference of autophagy genes conferred Cry5B hypersensitivity in C. elegans. On the other hand, induction of autophagy by genetic or pharmacological approaches defended against Cry5B toxicity. Moreover, our rhodamine-labeled PFT experiments also demonstrated that the rhodamine-labeled PFT signals were colocalized with the authophagosome biomaker, LGG-1. These results demonstrated, to our knowledge for the first time, autophagy and autophagic pathway are induced by Cry5B, and is required to protect C. elegans upon pore-forming toxins intoxication.

    誌謝 3 中文摘要 5 Abstract 6 Materials and Methods 16 Nematode Strains 16 Maintaining C. elegans Strains 16 Bacterial Strains 17 PFTs and Bacterial Killing Assays 17 C. elegans Autophagy Analysis and Microscopy 19 Real-Time RT-PCR 20 Data Analysis 21 Generation of The atg-4.1 and atg-4.2 Double Mutants 22 Results 23 Cry5B activates autophagy, at least in part, through transcriptional regulation 23 Autophagy is required for defense of C. elegans against Cry5B 26 Autophagy is generally required for PFT defense in C. elegans 31 Activation of autophagy in the intestine is specific for PFTs defense 33 Many known pathways defend against PFTs are also involved in the activation of autophagy by Cry5B 33 Discussion 35 Reference 39 Figures 45 Figure 1 45 Figure 2 46 Figure 3 47 Figure 4 48 Figure 5 49 Figure 6 50 Figure 7 52 Figure 8 54 Figure 9 56 Figure 10 58 Figure 11 60 Figure 12 61 Figure 13 62 Fiugre 14 63 Figure 15 64 Figure 16 65 Figure 17 66 Figure 18 67 Figure 19 68 Supplemental data 69 Figure S1. 69 Figures S2. 70 Figure S3. 71 Figure S4. 72 Appendix 73 1. C. elegans life cycle at 22˚C 73 2. Schematic diagram of the steps of autophagy. 74 3. Mode of action of Cry-PFT 75 4. The signaling pathways involve in PFTs defense. 76 作者簡介 77

    Alouf, J.E. (2003). Molecular features of the cytolytic pore-forming bacterial protein toxins. Folia Microbiol (Praha) 48, 5-16.

    Aroian, R., and van der Goot, F.G. (2007). Pore-forming toxins and cellular non-immune defenses (CNIDs). Curr Opin Microbiol 10, 57-61.

    Bellier, A., Chen, C.S., Kao, C.Y., Cinar, H.N., and Aroian, R.V. (2009). Hypoxia and the hypoxic response pathway protect against pore-forming toxins in C. elegans. PLoS Pathog 5, e1000689.

    Bischof, L.J., Huffman, D.L., and Aroian, R.V. (2006). Assays for toxicity studies in C. elegans with Bt crystal proteins. Methods Mol Biol 351, 139-154.

    Bischof, L.J., Kao, C.Y., Los, F.C., Gonzalez, M.R., Shen, Z., Briggs, S.P., van der Goot, F.G., and Aroian, R.V. (2008). Activation of the unfolded protein response is required for defenses against bacterial pore-forming toxin in vivo. PLoS Pathog 4, e1000176.Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics 77, 71-94.
    Cancino-Rodezno, A., Alexander, C., Villasenor, R., Pacheco, S., Porta, H., Pauchet, Y., Soberon, M., Gill, S.S., and Bravo, A. (2010). The mitogen-activated protein kinase p38 is involved in insect defense against Cry toxins from Bacillus thuringiensis. Insect Biochem Mol Biol 40, 58-63.

    Chen, C.S., Bellier, A., Kao, C.Y., Yang, Y.L., Chen, H.D., Los, F.C., and Aroian, R.V. (2010). WWP-1 is a novel modulator of the DAF-2 insulin-like signaling network involved in pore-forming toxin cellular defenses in Caenorhabditis elegans. PLoS One 5, e9494.

    Crickmore, N., Zeigler, D.R., Schnepf, E., Van Rie, J., Lereclus, D., Baum, J, Bravo, A. and Dean, D.H. (2010). Bacillus thuringiensis toxin nomenclature. In http://wwwlifescisussexacuk/Home/Neil_Crickmore/Bt/

    Dhakal, B.K., Lee, W., Kim, Y.R., Choy, H.E., Ahnn, J., and Rhee, J.H. (2006). Caenorhabditis elegans as a simple model host for Vibrio vulnificus infection. Biochem Bioph Res Co 346, 751-757.
    Eisenberg, T., Knauer, H., Schauer, A., Buttner, S., Ruckenstuhl, C., Carmona-Gutierrez, D., Ring, J., Schroeder, S., Magnes, C., Antonacci, L., et al. (2009). Induction of autophagy by spermidine promotes longevity. Nat Cell Biol 11, 1305-1314.

    Gonzalez, M.R., Bischofberger, M., Pernot, L., van der Goot, F.G., and Freche, B. (2008). Bacterial pore-forming toxins: the (w)hole story? Cell Mol Life Sci 65, 493-507.

    Griffitts, J.S., Haslam, S.M., Yang, T., Garczynski, S.F., Mulloy, B., Morris, H., Cremer, P.S., Dell, A., Adang, M.J., and Aroian, R.V. (2005). Glycolipids as receptors for Bacillus thuringiensis crystal toxin. Science 307, 922-925.

    Griffitts, J.S., Whitacre, J.L., Stevens, D.E., and Aroian, R.V. (2001). Bt toxin resistance from loss of a putative carbohydrate-modifying enzyme. Science 293, 860-864.

    Gutierrez, M.G., Saka, H.A., Chinen, I., Zoppino, F.C., Yoshimori, T., Bocco, J.L., and Colombo, M.I. (2007). Protective role of autophagy against Vibrio cholerae cytolysin, a pore-forming toxin from V. cholerae. Proc Natl Acad Sci U S A 104, 1829-1834.

    Hermann, G.J., Schroeder, L.K., Hieb, C.A., Kershner, A.M., Rabbitts, B.M., Fonarev, P., Grant, B.D., and Priess, J.R. (2005). Genetic analysis of lysosomal trafficking in Caenorhabditis elegans. Mol Biol Cell 16, 3273-3288.

    Hu, Y., Georghiou, S.B., Kelleher, A.J., and Aroian, R.V. (2010a). Bacillus thuringiensis Cry5B protein is highly efficacious as a single-dose therapy against an intestinal roundworm infection in mice. PLoS Negl Trop Dis 4, e614.

    Hu, Y., Platzer, E.G., Bellier, A., and Aroian, R.V. (2010b). Discovery of a highly synergistic anthelmintic combination that shows mutual hypersusceptibility. Proc Natl Acad Sci U S A 107, 5955-5960.

    Huffman, D.L., Abrami, L., Sasik, R., Corbeil, J., van der Goot, F.G., and Aroian, R.V. (2004). Mitogen-activated protein kinase pathways defend against bacterial pore-forming toxins. Proc Natl Acad Sci U S A 101, 10995-11000.
    Husmann, M., Dersch, K., Bobkiewicz, W., Beckmann, E., Veerachato, G., and Bhakdi, S. (2006). Differential role of p38 mitogen activated protein kinase for cellular recovery from attack by pore-forming S. aureus alpha-toxin or streptolysin O. Biochem Biophys Res Commun 344, 1128-1134.

    Jia, K., Thomas, C., Akbar, M., Sun, Q., Adams-Huet, B., Gilpin, C., and Levine, B. (2009). Autophagy genes protect against Salmonella typhimurium infection and mediate insulin signaling-regulated pathogen resistance. Proceedings of the National Academy of Sciences.

    Kamath, R.S., Fraser, A.G., Dong, Y., Poulin, G., Durbin, R., Gotta, M., Kanapin, A., Le Bot, N., Moreno, S., Sohrmann, M., et al. (2003). Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421, 231-237.

    Kang, C., and Avery, L. (2008). To be or not to be, the level of autophagy is the question: dual roles of autophagy in the survival response to starvation. Autophagy 4, 82-84.

    Kang, C., and Avery, L. (2010). Death-associated protein kinase (DAPK) and signal transduction: fine-tuning of autophagy in Caenorhabditis elegans homeostasis. FEBS J 277, 66-73.

    Kang, C., You, Y.J., and Avery, L. (2007). Dual roles of autophagy in the survival of Caenorhabditis elegans during starvation. Genes Dev 21, 2161-2171.

    Kao, C.Y., Los, F.C., Huffman, D.L., Wachi, S., Kloft, N., Husmann, M., Karabrahimi, V., Schwartz, J.L., Bellier, A., Ha, C., et al. (2011). Global functional analyses of cellular responses to pore-forming toxins. PLoS Pathog 7, e1001314.

    Klionsky, D.J., Abeliovich, H., Agostinis, P., Agrawal, D.K., Aliev, G., Askew, D.S., Baba, M., Baehrecke, E.H., Bahr, B.A., Ballabio, A., et al. (2008). Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 4, 151-175.

    Kloft, N., Neukirch, C., Bobkiewicz, W., Veerachato, G., Busch, T., von Hoven, G., Boller, K., and Husmann, M. (2010). Pro-autophagic signal induction by bacterial pore-forming toxins. Med Microbiol Immunol 199, 299-309.
    Kovacs, A.L., and Zhang, H. (2010). Role of autophagy in Caenorhabditis elegans. FEBS Lett 584, 1335-1341.

    Lamitina, T., Huang, C.G., and Strange, K. (2006). Genome-wide RNAi screening identifies protein damage as a regulator of osmoprotective gene expression. Proc Natl Acad Sci U S A 103, 12173-12178.

    Lee, J.H., Kim, M.W., Kim, B.S., Kim, S.M., Lee, B.C., Kim, T.S., and Choi, S.H. (2007). Identification and characterization of the Vibrio vulnificus rtxA essential for cytotoxicity in vitro and virulence in mice. J Microbiol 45, 146-152.

    Lee, S.E., Ryu, P.Y., Kim, S.Y., Kim, Y.R., Koh, J.T., Kim, O.J., Chung, S.S., Choy, H.E., and Rhee, J.H. (2004). Production of Vibrio vulnificus hemolysin in vivo and its pathogenic significance. Biochem Biophys Res Commun 324, 86-91.

    Li, X.Q., Tan, A., Voegtline, M., Bekele, S., Chen, C.S., and Aroian, R.V. (2008). Expression of Cry5B protein from Bacillus thuringiensis in plant roots confers resistance to root-knot nematode. Biol Control 47, 97-102.

    Lo, H.R., Lin, J.H., Chen, Y.H., Chen, C.L., Shao, C.P., Lai, Y.C., and Hor, L.I. (2011). RTX toxin enhances the survival of vibrio vulnificus during infection by protecting the organism from phagocytosis. J Infect Dis 203, 1866-1874.

    Los, F.C., Kao, C.Y., Smitham, J., McDonald, K.L., Ha, C., Peixoto, C.A., and Aroian, R.V. (2011). RAB-5- and RAB-11-dependent vesicle-trafficking pathways are required for plasma membrane repair after attack by bacterial pore-forming toxin. Cell Host Microbe 9, 147-157.

    Marroquin, L.D., Elyassnia, D., Griffitts, J.S., Feitelson, J.S., and Aroian, R.V. (2000). Bacillus thuringiensis (Bt) toxin susceptibility and isolation of resistance mutants in the nematode Caenorhabditis elegans. Genetics 155, 1693-1699.

    Megalou, E.V., and Tavernarakis, N. (2009). Autophagy in Caenorhabditis elegans. Biochim Biophys Acta 1793, 1444-1451.

    Melendez, A., and Levine, B. (2009). Autophagy in C. elegans. WormBook, 1-26.

    Mestre, M.B., Fader, C.M., Sola, C., and Colombo, M.I. (2010). Alpha-hemolysin is required for the activation of the autophagic pathway in Staphylococcus aureus-infected cells. Autophagy 6, 110-125.

    Meyer-Morse, N., Robbins, J.R., Rae, C.S., Mochegova, S.N., Swanson, M.S., Zhao, Z., Virgin, H.W., and Portnoy, D. (2010). Listeriolysin O is necessary and sufficient to induce autophagy during Listeria monocytogenes infection. PLoS One 5, e8610.

    Mizushima, N., and Levine, B. (2010). Autophagy in mammalian development and differentiation. Nat Cell Biol 12, 823-830.

    Mizushima, N., Levine, B., Cuervo, A.M., and Klionsky, D.J. (2008). Autophagy fights disease through cellular self-digestion. Nature 451, 1069-1075.

    Organization, W.H. (2008). The top ten causes of death. Fact Sheet No 310.

    Ravikumar, B., Moreau, K., Jahreiss, L., Puri, C., and Rubinsztein, D.C. (2010). Plasma membrane contributes to the formation of pre-autophagosomal structures. Nat Cell Biol 12, 747-757.

    Rual, J.F., Ceron, J., Koreth, J., Hao, T., Nicot, A.S., Hirozane-Kishikawa, T., Vandenhaute, J., Orkin, S.H., Hill, D.E., van den Heuvel, S., et al. (2004). Toward improving Caenorhabditis elegans phenome mapping with an ORFeome-based RNAi library. Genome Res 14, 2162-2168.

    Sarkar, S., Floto, R.A., Berger, Z., Imarisio, S., Cordenier, A., Pasco, M., Cook, L.J., and Rubinsztein, D.C. (2005). Lithium induces autophagy by inhibiting inositol monophosphatase. J Cell Biol 170, 1101-1111.

    Schulenburg, H., Kurz, C.L., and Ewbank, J.J. (2004). Evolution of the innate immune system: the worm perspective. Immunol Rev 198, 36-58.

    Sifri, C.D., Begun, J., and Ausubel, F.M. (2005). The worm has turned--microbial virulence modeled in Caenorhabditis elegans. Trends Microbiol 13, 119-127.

    Sineva, E.V., Andreeva-Kovalevskaya, Z.I., Shadrin, A.M., Gerasimov, Y.L., Ternovsky, V.I., Teplova, V.V., Yurkova, T.V., and Solonin, A.S. (2009). Expression of Bacillus cereus hemolysin II in Bacillus subtilis renders the bacteria pathogenic for the crustacean Daphnia magna. FEMS Microbiol Lett 299, 110-119.

    Soberon, M., Pardo, L., Munoz-Garay, C., Sanchez, J., Gomez, I., Porta, H., and Bravo, A. (2010). Pore formation by Cry toxins. Adv Exp Med Biol 677, 127-142.

    Takeshige, K., Baba, M., Tsuboi, S., Noda, T., and Ohsumi, Y. (1992). Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. J Cell Biol 119, 301-311.

    Tian, Y., Li, Z., Hu, W., Ren, H., Tian, E., Zhao, Y., Lu, Q., Huang, X., Yang, P., Li, X., et al. (2010). C. elegans screen identifies autophagy genes specific to multicellular organisms. Cell 141, 1042-1055.

    van der Poll, T., and Opal, S.M. (2009). Pathogenesis, treatment, and prevention of pneumococcal pneumonia. Lancet 374, 1543-1556.

    Wei, J.Z., Hale, K., Carta, L., Platzer, E., Wong, C., Fang, S.C., and Aroian, R.V. (2003). Bacillus thuringiensis crystal proteins that target nematodes. Proc Natl Acad Sci U S A 100, 2760-2765.

    Williams, B.W. (1988). Introduction to C. elegans biology. The nematode Caenorhabditis elegans 1-16.

    Yang, Z., and Klionsky, D.J. (2009). An overview of the molecular mechanism of autophagy. Curr Top Microbiol Immunol 335, 1-32.

    You, Y.J., Kim, J., Cobb, M., and Avery, L. (2006). Starvation activates MAP kinase through the muscarinic acetylcholine pathway in Caenorhabditis elegans pharynx. Cell Metab 3, 237-245.


    無法下載圖示 校內:2021-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE