簡易檢索 / 詳目顯示

研究生: 高翊庭
Kao, I-Ting
論文名稱: 水下考古用客製化小型ROV於水下攝影測量之應用
Customized Small-ROV for Underwater Archaeology Photogrammetry
指導教授: 陳政宏
Chen, Jeng-Horng
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 94
中文關鍵詞: 水下遙控無人載具人機介面人因工程水下考古
外文關鍵詞: ROV, user interface, Ergonomic, Human Factor, Underwater archaeology
相關次數: 點閱:123下載:19
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 水下考古在台灣逐漸成為重要的海上研究活動之一,其對水下工具與技術的需求變成相關工程領域相當有興趣的議題。水下載具的應用能到達潛水員難以甚或無法抵達的深度,亦可利用其專業儀器及裝備協助水下發掘工作。
    其中水下無人遙控載具(ROV)由於其成熟的技術與改裝及使用的彈性與便利,成為最容易運用的載具。本研究中,我們加入人因工程概念來重新客製化設計ROV的控制系統與人機介面,因水下考古時的一個重要考量為當考古學家無法潛水或想降低潛水的風險而減少水下工作的時間與頻率時,他們需要搭配適合的輔助工具,但他們通常不具有使用此類載具的經驗。因此傳統ROV控制偏向類飛行員介面的設計對初次使用的人員來說可能過於複雜。故本研究利用無潛水與航行經驗者為對象,使用連感分析法設計螢幕上的數位控制面板、並映射至鍵盤上的控制鍵。如此可以把最重要的資訊在螢幕上清楚的呈現,提升使用者的操作經驗。
    攝影輔助水下三維地形建模為計劃中重要的一環,即時運算建構的水下地形可以幫助水下考古團隊對水下考古遺址進行更全面性的評估並且擬定保存計畫。2017年,與我們合作的成大測量系團隊已經藉由潛水人員所拍攝的拖航水槽消坡區一系列的影像建構出完整的地貌模型。本次將藉由水下遙控無人載具模仿潛水人員的軌跡重新拍攝一組照片,並在本階段最後產生局部完整的三維地貌模型。
    水下遙控無人載具的部分為本研究統整來自各方要求後由概念設計圖開始規劃及製造。在實驗過程中不斷發現問題並進行改良,目前已有至少三個版本進行過測試。同時為了重現水下工作時可能遭遇的困難,我們進行了實驗用小型水域(穩定水槽),大型水域(拖航水槽)及實際水域(安平港)的操作實驗,同時也在環境光源充足、缺乏; 水質清澈、混濁的環境中進行測試。
    同時我們也將實驗開發資料及未來改進目標傳承下一任開發者,期能達成永續研究的開發項目。

    Underwater archaeology gradually becomes an important maritime activity in Taiwan and its need for appropriate underwater tools, including vehicles, and technology becomes an interesting topic for related engineering fields. Underwater vehicles can reach the depth that divers hard to approach and can help divers work by their specialized equipment and various instruments. Among related technologies, ROV is the most accessible due to its mature technology, flexibility of design and modification.
    In this research, we applied human factor and ergonomic concepts to a ROV control system and user interface design, because one important using scenario is when archaeologist could dive, or when they want to reduce the risk by reducing diving frequency and/or duration, especially in bad weather or danger seas. We reveal a self-designed ROV control system by adopting a persona of our user group to fit the requirement of a person who never dives neither drives a vehicle moving in an open area. To build the user interface, we applied link analyze method to construct a digital control Pad on the screen and a physical console associated to keyboards. The traditional user interfaces built for ROV were basically transplanted from aircraft pilot interface, which provided detailed information to well-trained operators and unfriendly to inexperienced archeologists. The interface described here gives a clear look overall screen while all the vital information was included.
    Photogrammetry plays an important role in the underwater study. The ability to reconstruct the seabed geography can help archaeologists do a quick survey on the field and make up the digging plan. In 2016, our partner generated the 3-D model of wave-damping area of the towing tank based on a series of pictures taken by a diver. In research, we regenerate part of the wave damping area based on the ROV’s picture data at the end of this research.
    The design and build of the ROV system start from a conceptual drawing include the frame, thrusters and the camera. We add more elements in structure, thrusters’ arrangement and frame design to keep evolving the ROV system. The latest system has upgraded at least two versions. We try to reproduce obstacles expected to encounter in the sea as insufficient illustration, bad visibility, and trapping of tether. The test environments include stabilization tank, owing tank laboratory and harbor area. We leave suggestions for the future developers to keep on evolving the system.

    摘要 I ABSTRACT II ACKNOWLEDGEMENT III CONTENTS IV LIST OF TABLES VI LIST OF FIGURES VII NOMENCLATURE XII CHAPTER 1 INTRODUCTION 1 1.1 MOTIVATION 1 1.2 LITERATURE REVIEW 2 1.3 RESEARCH PURPOSE 5 CHAPTER 2 RESEARCH METHOD 7 2.1 INTEGRATED DESIGN METHOD 7 2.2 ERGONOMICS AND HUMAN FACTORS 9 2.2.1 Hicks Law 9 2.2.2 Memory Storage 10 2.2.3 Signal Detection Theory 17 2.2.4 Compatibility 19 2.2.5 Visual Display 21 2.2.6 Link Analysis Method 22 2.2.7 Persona 23 2.3 TECHNOLOGICAL DESIGNING PHASE 25 2.3.1 Overall customized design 25 2.3.2 Control system 26 2.3.3 Power 29 2.3.4 Pressure loading cell 34 2.3.5 Housing Frame 38 2.3.6 Propulsion Force 40 2.3.7 Thruster Arrangement 42 2.3.8 Close-range photogrammetry consideration 45 CHAPTER 3 DESIGNING RESULT 47 3.1 USER INTERFACE DESIGN 47 3.2 TESTING FACILITIES 56 3.3 TESTS 58 3.3.1 Stabilization Tank under Normal Illumination 58 3.3.2 Stabilization Tank under reduced illumination 59 3.3.3 Towing Tank under normal illumination 60 3.3.4 Towing Tank without illumination 62 3.3.5 Towing Tank beach area 63 3.3.6 Visibility test 68 3.3.7 Field Test and Discussion 70 CHAPTER 4 CONCLUSIONS AND SUGGESTIONS 75 4.1 CONCLUSIONS 75 4.2 SUGGESTIONS 76 REFERENCES 78 APPENDIX 83 APPENDIX A RAW DATA OF MEMORY STORAGE TEST SET-A 83 APPENDIX B RAW DATA OF MEMORY STORAGE TEST SET-B 84 APPENDIX C RAW DATA OF MEMORY STORAGE TEST SET-C 85 APPENDIX D CAMERA CELL HATCH-WINDOW 86 APPENDIX E CAMERA CELL HATCH-CAPSULE 87 APPENDIX F. ANALYSIS DATA OF THE WHOLE INSTALLATION 88 APPENDIX G. ANALYSIS DATA OF THE FRAME 89 APPENDIX H RAW DATA OF LEARNING CURVE PART-I 90 APPENDIX I RAW DATA OF LEARNING CURVE PART-II 91 APPENDIX J. FINAL SPECIFICATION OF THE ROV KRAKEN 92 APPENDIX K. WATER QUALITY INVESTIGATION IN CHIMEI, PENG-HU 93 APPENDIX L. WATER QUALITY INVESTIGATION IN WANG-AN, PENG-HU 94

    Allotta, B., Costanzi, R., Ridolfi, A., Colombo, C., Bellavia, F., Fanfani, M., Pascali, M. A. The ARROWS project: adapting and developing robotics technologies for underwater archaeology. IFAC-PapersOnLine, 48(2), 194-199., 2015.
    [2]. Asgeir, J. S., Ludvigsen, M. Towards Integrated Autonomous Underwater Operations. IFAC-Papers OnLine, pp. 107-118., 2015.
    [3]. Bryant, A. Hydrostatic pressure buckling of a ring-stiffened tube. Naval Construction. Research-Establishment Report., 1981.
    [4]. Bisseret, A. Application of signal detection theory to decision making in supervisory control The effect of the operator's experience. Ergonomics, 24(2), 81-94., 1981.
    [5]. Bayerl, J. P.; Millen, D. R., & Lewis, S. H. Consistent layout of function keys and screen labels speeds user responses. Paper presented at the Proceedings of the Human Factors Society Annual Meeting., 1988.
    [6]. Czaja, S. Microcomputers and the elderly. Handbook of human-computer interaction, 581-598.,1988.
    [7]. Divingheritage.Retrieved 21.07.17,from_http://www.divingheritage.com/rovkern.htm., 1999.
    [8]. Deep Ocean Emgineering Inc.,Triggerfish Manual, CA. ,2000.
    [9]. Fitts, P. M., & Seeger, C. M.. SR compatibility: spatial characteristics of stimulus and response codes. Journal of experimental psychology, 46(3), 199., 1953.
    [10]. Fowler, R.; Williams, W.; Fowler, M., & Young, D. An Investigation of the Relationship between Operator Performance and Operator Panel Layout for Continuous Tasks: Philco-Ford Corp Palo Alto Calif Western Development Labs., 1968.

    [11]. Furukawa, Y.; Curless, B.; Seitz, S. M.; & Szeliski, R. Towards internet-scale multi-view stereo. Paper presented at the Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on., 2010.
    [12]. Gerard, G. Plastic stability theory of thin shells. Journal of the Aeronautical Sciences, 24(4), 269-274., 1957.
    [13]. Geer, C. W. Human engineering procedures guide: Boeing Aerospace Co Seattle Wa Engineering Technology DIV., 1981.
    [14]. Goesele, M.; Snavely, N.; Curless, B.; Hoppe, H.; & Seitz, S. M. Multi-view stereo for community photo collections. Paper presented at the Computer Vision, 2007. ICCV 2007. IEEE 11th International Conference ., 2007
    [15]. Hick, W. E., On the rate of gain of information. Quarterly Journal of Experimental Psychology, 4(1), 11-26., 1952.
    [16]. Hartley, R., & Zisserman, A., Multiple view geometry in computer vision: Cambridge University press., 2003.
    [17]. Jasinski, M. E. Which way now? Maritime archaeology and underwater heritage into the 21st century. Paper presented at the world archaeological congress., 1999.
    [18]. Kendrick, S., The buckling under external pressure of ring stiffened circular cylinders. Trans. RINA, 107(1)., 1965.
    [19]. Kantowitz, B. H., & Sorkin, R. D., Human factors: Understanding people-system relationships: John Wiley & Sons Inc., 1983.
    [20]. Kawamura, S., Underwater Robot Development for Manipulation Task and their Uses in Biwa Lake. IFAC-PapersOnLine, 48(2), 14-19., 2015.
    [21]. Leatherdale, J. D., & Turner, D. J. Operational experience in underwater photogrammetry. ISPRS Journal of photogrammetry and remote sensing, 46(2), 104-112., 1991.
    [22]. Merkel, J. Die zeitlichen verhältnisse der willensthätigkeit: W. Engelmann., 1883
    [23]. Miller, G. A. The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychological review, 63(2), 81., 1956.
    [24]. McCormick, C. W. The Nastran User's Manual. Washinton, D.C.: Scientific and Technical Information Office, National Aeronautics and Space Administration. 1973.
    [25]. McCaormick, S. & Ernest.J. Human Factors in Engineeering and Design (7 ed.). McGraw-Hill, INC., 1998.
    [26]. Nornes, S. M.; Ludvigsen, M.; Ødegard, Ø., & SØrensen, A. J., Underwater photogrammetric mapping of an intact standing steel wreck with ROV. IFAC-PapersOnLine, 48(2), 206-211., 2015.
    [27]. Pollefeys, M.; Nistér, D.; Frahm, J.-M.; Akbarzadeh, A.; Mordohai, P.; Clipp, B.; Merrell, P. Detailed real-time urban 3d reconstruction from video. International Journal of Computer Vision, 78(2), 143-167., 2008.
    [28]. Pittro C. ; Roan J.; Mahaffey S. ; Berry K.; Sinahal A. ; Chun. J.H. ; Imm Z.; Fletcher C.; Vaughn M.; Saneholtz. N. Robotic Aquovations. Columbus: Ohio State University., 2013.
    [29]. Rigaud, V. Innovation and operation with robotized underwater systems. Journal of Field robotics, 24(6), 449-459., 2007.
    [30]. Remondino, F., Spera, M. G., Nocerino, E., Menna, F., & Nex, F., State of the art in high density image matching. The Photogrammetric Record, 29(146), 144-166., 2014.
    [31]. Reggiannini, M., & Salvetti, O. Seafloor analysis and understanding for underwater archeology. Journal of Cultural Heritage, 24, 147-156., 2017.
    [32]. Shannon, C. E., & Weaver, W., The mathematical theory of communication: University of Illinois press., 1949.
    [33]. Systems Aeronautical Division. Human Factors Engineering. OH: Wright-Patterson Air Force Base., 1980.
    [34]. Søreide, F. Cost‐effective deep water archaeology: preliminary investigations in Trondheim Harbour. International Journal of Nautical Archaeology, 29(2), 284-293., 2000.

    [35]. Snavely, N.; Seitz, S. M.; & Szeliski, R. Modeling the world from internet photo collections. International Journal of Computer Vision, 80(2), 189-210., 2008.
    [36]. Shan, Q.; Adams, R.; Curless, B.; Furukawa, Y.; & Seitz, S. M., The visual turing test for scene reconstruction. Paper presented at the 3DTV-Conference, 2013 International Conference on., 2013.
    [37]. Sørensen, A. J., & Ludvigsen, M., Towards integrated autonomous underwater operations. IFAC-PapersOnLine, 48(2), 107-118., 2015.
    [38]. Salvendy, G. E., Handbook of human factors., 1987.
    [39]. Sanders, M. S., & McCormick, E. J., Human factors in engineering and design., 1993.
    [40]. ROV Marine Technologies The History of ROVs. (ROVmarine Technologies) Retrieved 21.07.17, from http://www.rovmarine.it/en/home-eng/14-not-categorized/16-the-history-of-rovs., 2000
    [41]. Total Marine Technology TMT Control Console. Retrieved 06.26.17, from TMT console page :http://www.tmtrov.com.au/tooling/standard-tooling/tmt-control-console, 2017.
    [42]. USS_Sarsfield_(DD837).Retrieved from wikipedia: https://en.wikipedia.org/wiki/USS_Sarsfield_(DD-837) ,2017.
    [43]. Von MisesR. Mechanik der festen Körper im plastisch deformablen Zustand. Göttin. Nachr. Math. Phys., vol. 1, pp. 582–592. ,1913.
    [44]. Van De Car, I. Detecting Threats from Constituent Parts: A Fuzzy Signal Detection Theory Analysis of Individual Differences., 2015.
    [45]. Welford, A.T. Signal, Noise, Performance, and Age. Human Factors., pp. 23,97-109, 1981.
    [46]. Wickens, C. Engineering psychology and human performance. Columbus: Merill., 1984..
    [47]. Wilson, L. B. The elastic deformation of a circular cylinderical shell supported by equally spaced rinf frames under uniform external pressure. Trans RINA, 108., 1966.
    [48]. Woodson, W. C., D. Human Engineering Guide for equipment Designers (2 ed.): University of California., 1970.
    [49]. 方銘川. 阻力與推進, 阻力與推進上課講義, 2015.
    [50]. 林忠宏,許哲穎, & 張平儒. 深海環境下圓筒型壓力殼之壓潰行為探討. 中國機械工程學會第二十一屆全國學術研討會論文集, 2004.
    [51]. 吳政翰. The Improvement of Resistance and Propulsion Related Experimental Techniques and Data Analysis for Ship Model Test. Tainan: National Cheng Kung University Master Thesis., 2015.
    [52]. 郭芯瑜,詹鈞評,饒見有,&陳政宏. 水下攝影相機率定與量測精度分析. The 34th Survey & Geographical Information Research Conference. Ilan., 2015.
    [53]. 臺南市漁港及近海管理所. 104年度安平漁港舊港口重建計畫營運期間環境監測工作 104年年報, 2015
    [54]. 行政院環境保護署 全國環境水質監測資訊網 106年監測資料多筆, 2017

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE