簡易檢索 / 詳目顯示

研究生: 陳柏睿
Chen, Po-Jui
論文名稱: 利用逐層組裝之聚氨酸合成金/二氧化矽奈米管以及聚賴氨酸及聚酪氨酸之 團聯共聚氨酸之自組裝
Synthesis of gold/silica nanotubes mediated by Layer-by-layer assembled polypeptides and self-assembly of poly-L-lysine-b-poly-L-tyrosine block copolypeptides
指導教授: 詹正雄
Jan, Jeng-Shiung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 92
中文關鍵詞: 聚氨酸賴氨酸酪氨酸自組裝逐層組裝法金/二氧化矽奈米複合材料觸媒囊泡結構pH值應答
外文關鍵詞: polypeptide, ploy(L-lysine), poly(L-tyrosine), self-assembly, layer-by-layer, gold/silica nanocomposite, catalyst, vesicle, pH respond
相關次數: 點閱:105下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們利用聚賴氨酸 (PLL) 跟聚酪氨酸 (PLT) 透過逐層組裝法去合成金奈米粒子/中孔洞二氧化矽奈米管(gold NP/m-silica tube),以及利用聚賴氨酸跟聚酪氨酸的團聯共聚氨酸(PLL-b-PLT)透過超分子組裝法合成軟性球殼結構。金奈米粒子/中孔洞二氧化矽奈米管的合成是利用兩種可犧牲性的模版(PLL/PLT 和聚碳酸膜)的方法所製成的。利用逐層組裝法將PLL和PLT 置於聚碳酸膜的孔洞中,而還原金奈米粒子及沉析二氧化矽的反應皆會呈現在PLL/PLT多層膜中。金奈米粒子的大小會隨著增加金前驅物的濃度而增大,而且還原兩天的結果呈現出比較小的金奈米粒子分布在網狀結構的二氧化矽之中。金奈米粒子/中孔洞二氧化矽奈米管的觸媒效果會隨著減少金奈米粒子的大小而有所增加,不論是再多的金含量也呈現類似的結果。隨著改變 PLL-b-PLT團聯共聚氨酸的分子量,所呈現的自組裝種類也隨之改變。由氫核磁共振圖譜 (1H NMR) 以及動態光散射儀 (DLS) 的結果,我們可以去推斷其自組裝的種類。Lys212-b-Tyr106團連共聚氨基酸在酸鹼值為7及12,95/5% 體積比,水/甲醇的水溶液中呈現出囊泡雙層結構且PLL是位於外層而PLT是位於內層。相較於Lys17-b-Tyr12團聯共聚氨酸,在酸鹼值為7及12,95/5% 體積比,水/甲醇的水溶液中呈現出具反轉特性的囊泡結構。

    Here we report the use of layer-by-layer (LBL) assembled poly(L-lysine)/poly(L-tyrosine) (PLL/PLT) multilayer films on the cylindrical pores in the polycarbonate (PC) membranes as templates for synthesizing gold nanoparticle/mesoporous silica tubes (gold NP/m-silica tubes) and supramolecular assembly of poly(L-lysine)-b-poly(L-tyrosine) (PLL-b-PLT) diblock copolypeptides. Synthesis of gold nanoparticle/mesoporous silica tubes (gold NP/m-silica tubes) using dual sacrificial templates (e.g., PLL/PLT film and PC membrane) was demonstrated through LBL assembly of PLL/PLT on membrane pores, and subsequent to reducing gold precursor and precipitating silica in the polypeptide multilayer films. The size and distribution of gold NPs inside the silica network can be controlled by reducing condition such as concentration of gold precursor and reducing time. The size of the gold NPs increased with the increases of gold precursor concentration and the sample with two days reduction showed better distribution of gold NP in the silica network, comparing with those with different conditions. The as-prepared gold NP/m-silica tubes possessed catalytic properties toward the reduction of p-nitrophenol. The gold NP/m-silica tubes with smaller size of gold NPs showed better catalytic property than those with larger size of catalyst. The catalytic property is correlated with the amount of gold inside the gold/silica catalysts. The poly(L-lysine)-b-poly(L-tyrosine) with high and low molecular weight were found to form different types of self-assembled structures. The type of the self-assembled structures has been analyzed through the 1H NMR and dynamic light scattering. The Lys212-b-Tyr106 formed a vesicular structure with the PLL block outside the bilayer and the PLT block inside the bilayer at pH 7 and 12 in 95/5% v/v water/methanol solution. In contrast, Lys17-b-Tyr12 presented the well reversible vesicle structure at pH 7 and pH 12 in 95/5% water/methanol solution.

    中文摘要 I Abstract II Acknowledge IV Index V Table index VII Figure index VIII 1. Introduction 1 1.1 Polypeptides 1 1.2 Self assembly of copolymers 1 1.3 The biomimetic synthesis of inorganics by peptides 6 1.4 Gold catalyst 8 1.5 Motivation 10 2. Paper review 13 2.1 Layer-by-layer (LBL) assembly 13 2.1.1 Materials for LBL assembly 13 2.1.2 Templates for LBL assembly 19 3. Materials and experiments 29 3.1 Synthesis of gold NP/m-silica tubes 29 3.1.1 Materials 29 3.1.2 Experiments 30 3.1.3 Characterization 33 3.2 Self-assembly of PLL-PLT 35 3.2.1 Materials 35 3.2.2 Experiments 35 3.2.3 Characterization 37 4. Results and discussions 38 4.1 Synthesis of gold NP/m-silica tubes 38 4.1.1 Preparation of Templating Nanostructured Gold/m-silica tube 38 4.1.2 Characterization of gold NP/m-silica tubes 51 4.1.3 Conclusions 62 4.2 Self-assembly of PLL-b-PLT 64 4.2.1 Synthesis of PLL-b-PLT 65 4.2.2 Characterizations of Self-assembled vesicles 71 4.2.3 Conclusions 80 Reference 81

    1. S. Zhang, “Fabrication of novel biomaterials through molecular self-assembly,” Nature biotechnology2003, pp. 1171-1178.
    2. M. Sarikaya, C. Tamerler, K. Alex, K. Schulten, and F. Baneyx, “Molecular biomimetics: nanotechnology through biology,” Nature materials2003, pp. 577-585.
    3. C. Chen, and N. Rosi, “Peptide-Based Methods for the Preparation of Nanostructured Inorganic Materials,” Angewandte Chemie International Edition.
    4. J. Israelachvili, D. Mitchell, and B. Ninham, “Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers,” Journal of the Chemical Society, Faraday Transactions 21976, pp. 1525-1568.
    5. D.M. Vriezema, M.C. Aragones, J. Elemans, J. Cornelissen, A.E. Rowan, and R.J.M. Nolte, “Self-assembled nanoreactors,” Chemical Reviews, Apr 2005, pp. 1445-1489.
    6. D. Discher, and F. Ahmed, “Polymersomes,” 2006.
    7. M. Antonietti, and S. Forster, “Vesicles and liposomes: a self-assembly principle beyond lipids,” Advanced Materials2003, pp. 1323-1333.
    8. K. Kita-Tokarczyk, J. Grumelard, T. Haefele, and W. Meier, “Block copolymer vesicles—using concepts from polymer chemistry to mimic biomembranes,” Polymer2005, pp. 3540-3563.
    9. K. Letchford, and H. Burt, “A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes,” European journal of pharmaceutics and biopharmaceutics2007, pp. 259-269.
    10. J. Gaspard, J.A. Silas, D.F. Shantz, and J.S. Jan, “Supramolecular assembly of lysine-b-glycine block copolypeptides at different solution conditions,” Supramolecular Chemistry2010, pp. 178-185.
    11. S. Burke, H. Shen, and A. Eisenberg, “Multiple vesicular morphologies from block copolymers in solution,” John Wiley & Sons, 2001, pp. 273-284.
    12. I. Hamley, “Peptide Fibrillization,” Angewandte Chemie International Edition2007, pp. 8128-8147.
    13. L.C. Palmer, and S.I. Stupp, “Molecular Self-Assembly into One-Dimensional Nanostructures,” Accounts of Chemical Research, Dec 2008, pp. 1674-1684.
    14. D. Lensen, D.M. Vriezema, and J.C.M. van Hest, “Polymeric Microcapsules for Synthetic Applications,” Macromolecular Bioscience, Nov 2008, pp. 991-1005.
    15. R. Ulijn, and A. Smith, “Designing peptide based nanomaterials,” Chemical Society Reviews2008, pp. 664-675.
    16. R. Ellis-Behnke, Y. Liang, D. Tay, P. Kau, G. Schneider, S. Zhang, W. Wu, and K. So, “Nano hemostat solution: immediate hemostasis at the nanoscale,” Nanomedicine: Nanotechnology, Biology and Medicine2006, pp. 207-215.
    17. H. Shin, S. Jo, and A. Mikos, “Biomimetic materials for tissue engineering,” Biomaterials2003, pp. 4353-4364.
    18. R. Mart, R. Osborne, M. Stevens, and R. Ulijn, “Peptide-based stimuli-responsive biomaterials,” Soft Matter2006, pp. 822-835.
    19. R. Bhattacharjee, A. Das, D. Haldar, S. Si, A. Banerjee, and T. Mandal, “Peptide-Assisted Synthesis of Gold Nanoparticles and Their Self-Assembly,” Journal of Nanoscience and Nanotechnology2005, pp. 1141-1147.
    20. S. Si, R. Bhattacharjee, A. Banerjee, and T. Mandal, “A mechanistic and kinetic study of the formation of metal nanoparticles by using synthetic tyrosine-based oligopeptides,” Chemistry-A European Journal2005, pp. 1256-1265.
    21. S. Ray, A. Das, and A. Banerjee, “Smart oligopeptide gels: in situ formation and stabilization of gold and silver nanoparticles within supramolecular organogel networks,” Chemical Communications2006, pp. 2816-2818.
    22. F. Rodriguez, D. Glawe, R. Naik, K. Hallinan, and M. Stone, “Study of the chemical and physical influences upon in vitro peptide-mediated silica formation,” Biomacromolecules2004, pp. 261-265.
    23. J.S. Jan, S. Lee, C.S. Carr, and D.F. Shantz, “Biomimetic synthesis of inorganic nanospheres,” Chemistry of Materials2005, pp. 4310-4317.
    24. K. Hawkins, S. Wang, D. Ford, and D. Shantz, “Poly-L-lysine templated silicas: using polypeptide secondary structure to control oxide pore architectures,” Journal of the American Chemical Society2004, pp. 9112-9119.
    25. M. Tomczak, D. Glawe, L. Drummy, C. Lawrence, M. Stone, C. Perry, D. Pochan, T. Deming, and R. Naik, “Polypeptide-templated synthesis of hexagonal silica platelets,” Journal of the American Chemical Society2005, pp. 12577-12582.
    26. G. Bond, C. Louis, and D. In, “GJ Hutchings, Editor, Catalysis by Gold,” Book GJ Hutchings, Editor, Catalysis by Gold, Series GJ Hutchings, Editor, Catalysis by Gold, ed., Editor ed.^eds., Imperial College Press, London, 2006, pp.
    27. M.-C. Daniel, and D. Astruc, “Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology,” Chemical Reviews2003, pp. 293-346.
    28. G. Hutchings, “A golden future for green chemistry,” Catalysis Today2007, pp. 196-200.
    29. M. Lagunas, and C. Mendicute, “GOLD 2006 PRESENTATION,” Gold Bulletin2007, pp. 2.
    30. C. Gabbiani, A. Casini, and L. Messori, “Gold (III) compounds as anticancer drugs,” Gold Bulletin2007, pp. 73–81.
    31. S. Nolan, “Organic chemistry: Catalytic gold rush,” Nature2007, pp. 496-497.
    32. J. Schwank, S. Galvagno, and G. Parravano, “Isotopic oxygen exchange on supported Ru and Au catalysts,” Journal of Catalysis1980, pp. 415-424.
    33. D. Cha, and G. Parravano, “Surface reactivity of supported gold:: I. Oxygen transfer between CO and CO2,” Journal of Catalysis1970, pp. 200-211.
    34. G. Parravano, “Surface reactivity of supported gold:: II. Hydrogen transfer between benzene and cyclohexane,” Journal of Catalysis1970, pp. 320-328.
    35. A. Ueda, T. Oshima, and M. Haruta, “Reduction of nitrogen monoxide with propene in the presence of oxygen and moisture over gold supported on metal oxides,” Applied Catalysis B: Environmental1997, pp. 81-93.
    36. M. Haruta, “Size-and support-dependency in the catalysis of gold,” Catalysis Today1997, pp. 153-166.
    37. D. Andreeva, T. Tabakova, V. Idakiev, P. Christov, and R. Giovanoli, “Au/[alpha]-Fe2O3 catalyst for water-gas shift reaction prepared by deposition-precipitation,” Applied Catalysis A: General1998, pp. 9-14.
    38. S. Galvagno, and G. Parravano, “Chemical reactivity of supported gold:: IV. Reduction of NO by H2,” Journal of Catalysis1978, pp. 178-190.
    39. H. Sakurai, and M. Haruta, “Synergism in methanol synthesis from carbon dioxide over gold catalysts supported on metal oxides,” Catalysis Today1996, pp. 361-365.
    40. A. Arcadi, “Alternative synthetic methods through new developments in catalysis by gold,” Chemical Reviews, Aug 2008, pp. 3266-3325.
    41. Y. Wang, A.S. Angelatos, and F. Caruso, “Template synthesis of nanostructured materials via layer-by-layer assembly,” Chemistry of Materials, Feb 2008, pp. 848-858.
    42. S. Srivastava, and N.A. Kotov, “Composite Layer-by-Layer (LBL) Assembly with Inorganic Nanoparticles and Nanowires,” Accounts of Chemical Research2008, pp. 1831-1841.
    43. C. Jiang, H. Ko, and V. Tsukruk, “Strain-Sensitive Raman Modes of Carbon Nanotubes in Deflecting Freely Suspended Nanomembranes We thank H. Shulha for assistance. This work is supported by the NASA through NDE Center Contract NAG 102098, AFOSR, F496200210205, and AFOSR-DURIP F49620-03-1-0273 Grants,” Advanced Materials2005.
    44. H. Kim, B. Sohn, W. Lee, J. Lee, S. Choi, and S. Kwon, “Multifunctional layer-by-layer self-assembly of conducting polymers and magnetic nanoparticles,” Thin Solid Films2002, pp. 173-177.
    45. T. Cooper, A. Campbell, and R. Crane, “Formation of polypeptide-dye multilayers by electrostatic self-assembly technique,” Langmuir1995, pp. 2713-2718.
    46. F. Boulmedais, V. Ball, P. Schwinte, B. Frisch, P. Schaaf, and J. Voegel, “Buildup of exponentially growing multilayer polypeptide films with internal secondary structure,” Langmuir2003, pp. 440-445.
    47. Z. Liu, X. Wang, H. Wu, and C. Li, “Silver nanocomposite layer-by-layer films based on assembled polyelectrolyte/dendrimer,” Journal of colloid and interface science2005, pp. 604-611.
    48. Y. Lvov, G. Decher, and G. Sukhorukov, “Assembly of thin films by means of successive deposition of alternate layers of DNA and poly (allylamine),” Macromolecules1993, pp. 5396-5399.
    49. Y. Shimazaki, M. Mitsuishi, S. Ito, and M. Yamamoto, “Preparation of the layer-by-layer deposited ultrathin film based on the charge-transfer interaction,” Langmuir1997, pp. 1385-1387.
    50. P. Kohli, and G. Blanchard, “Design and demonstration of hybrid multilayer structures: Layer-by-layer mixed covalent and ionic interlayer linking chemistry,” Langmuir2000, pp. 8518-8524.
    51. E. Lojou, and P. Bianco, “Buildup of Polyelectrolyte- Protein Multilayer Assemblies on Gold Electrodes. Role of the Hydrophobic Effect,” Langmuir2004, pp. 748-755.
    52. W. Stockton, and M. Rubner, “Molecular-level processing of conjugated polymers. 4. Layer-by-layer manipulation of polyaniline via hydrogen-bonding interactions,” Macromolecules1997, pp. 2717-2725.
    53. J. Anzai, Y. Kobayashi, N. Nakamura, M. Nishimura, and T. Hoshi, “Layer-by-layer construction of multilayer thin films composed of avidin and biotin-labeled poly (amine) s,” Langmuir1999, pp. 221-226.
    54. J. Cho, and F. Caruso, “Investigation of the interactions between ligand-stabilized gold nanoparticles and polyelectrolyte multilayer films,” Chemistry of Materials2005, pp. 4547-4553.
    55. C.Y. Jiang, S. Markutsya, and V.V. Tsukruk, “Collective and individual plasmon resonances in nanoparticle films obtained by spin-assisted layer-by-layer assembly,” Langmuir, Feb 2004, pp. 882-890.
    56. E. Kleinfeld, and G. Ferguson, “Stepwise formation of multilayered nanostructural films from macromolecular precursors,” Science1994, pp. 370.
    57. P. Podsiadlo, A. Kaushik, E. Arruda, A. Waas, B. Shim, J. Xu, H. Nandivada, B. Pumplin, J. Lahann, and A. Ramamoorthy, “Ultrastrong and stiff layered polymer nanocomposites,” Science2007, pp. 80.
    58. S. Zhang, J. Shen, H. Fu, W. Dong, Z. Zheng, and L. Shi, “Bi2WO6 photocatalytic films fabricated by layer-by-layer technique from Bi2WO6 nanoplates and its spectral selectivity,” Journal of Solid State Chemistry2007, pp. 1456-1463.
    59. S. Vial, I. Pastoriza-Santos, J. Perez-Juste, and L. Liz-Marzan, “Plasmon coupling in layer-by-layer assembled gold nanorod films,” Langmuir2007, pp. 4606-4611.
    60. F. Caruso, “Hollow Capsule Processing through Colloidal Templating and Self-Assembly,” Chemistry - A European Journal2000, pp. 413-419.
    61. Z. Tang, N. Kotov, S. Magonov, and B. Ozturk, “Nanostructured artificial nacre,” Nature materials2003, pp. 413-418.
    62. Q. Li, J. Quinn, Y. Wang, and F. Caruso, “Preparation of Nanoporous Polyelectrolyte Multilayer Films via Nanoparticle Templating,” Chemistry of Materials2006, pp. 5480-5485.
    63. Q. Li, J. Quinn, and F. Caruso, “Nanoporous polymer thin films via polyelectrolyte templating,” Advanced Materials2005, pp. 2058-2062.
    64. Z. Liang, A.S. Susha, A. Yu, and F. Caruso, “Nanotubes prepared by layer-by-layer coating of porous membrane templates,” Advanced Materials2003, pp. 1849-1853.
    65. S.F. Ai, G. Lu, Q. He, and J.B. Li, “Highly flexible polyelectrolyte nanotubes,” Journal of the American Chemical Society, Sep 2003, pp. 11140-11141.
    66. S. Hou, C.C. Harrell, L. Trofin, P. Kohli, and C.R. Martin, “Layer-by-Layer Nanotube Template Synthesis,” Journal of the American Chemical Society2004, pp. 5674-5675.
    67. S. Hou, J. Wang, and C.R. Martin, “Template-Synthesized DNA Nanotubes,” Journal of the American Chemical Society2005, pp. 8586-8587.
    68. Y. Wang, Y. Tang, A. Dong, X. Wang, N. Ren, W. Shan, and Z. Gao, “Self-supporting porous zeolite membranes with sponge-like architecture and zeolitic microtubes,” Advanced Materials2002, pp. 994-997.
    69. J.F. Quinn, A.P.R. Johnston, G.K. Such, A.N. Zelikin, and F. Caruso, “Next generation, sequentially assembled ultrathin films: beyond electrostatics,” Chemical Society Reviews2007, pp. 707-718.
    70. E. Donath, G. Sukhorukov, F. Caruso, S. Davis, and H. Mohwald, “Novel hollow polymer shells by colloid-templated assembly of polyelectrolytes,” Angewandte Chemie International Edition1998, pp. 2201-2205.
    71. F. Caruso, R. Caruso, and H. Mohwald, “Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating,” Science1998, pp. 1111.
    72. R.A. Caruso, A. Susha, and F. Caruso, “Multilayered titania, silica, and Laponite nanoparticle coatings on polystyrene colloidal templates and resulting inorganic hollow spheres,” Chemistry of Materials, Feb 2001, pp. 400-409.
    73. Y. Itoh, M. Matsusaki, T. Kida, and M. Akashi, “Enzyme-responsive release of encapsulated proteins from biodegradable hollow capsules,” Biomacromolecules2006, pp. 2715-2718.
    74. A. Zelikin, J. Quinn, and F. Caruso, “Disulfide cross-linked polymer capsules: en route to biodeconstructible systems,” Biomacromolecules2006, pp. 27-30.
    75. D. Volodkin, A. Petrov, M. Prevot, and G. Sukhorukov, “Matrix polyelectrolyte microcapsules: new system for macromolecule encapsulation,” Langmuir2004, pp. 3398-3406.
    76. G. Sukhorukov, D. Volodkin, A. Gunther, A. Petrov, D. Shenoy, and H. Mohwald, “Porous calcium carbonate microparticles as templates for encapsulation of bioactive compounds,” Journal of Materials Chemistry2004, pp. 2073-2081.
    77. Y. Wang, A. Yu, and F. Caruso, “Nanoporous polyelectrolyte spheres prepared by sequentially coating sacrificial mesoporous silica spheres,” Angewandte Chemie International Edition2005, pp. 2888-2892.
    78. K. Sano, T. Yamamoto, and A. Yamamoto, “Preparation of Ni-or Pt-Containing Cyclic Esters by Oxidative Addition of Cyclic Carboxylic Anhydrides and Their Properties,” Bulletin of the Chemical Society of Japan1984, pp. 2741-2747.
    79. W.H. Daly, and D. Poch, “The preparation of N-carboxyanhydrides of [alpha]-amino acids using bis(trichloromethyl)carbonate,” Tetrahedron Letters1988, pp. 5859-5862.
    80. T.J. Deming, “Facile synthesis of block copolypeptides of defined architecture,” Nature1997, pp. 386-388.
    81. T.J. Deming, and S.A. Curtin, “Chain initiation efficiency in cobalt-and nickel-mediated polypeptide synthesis,” Journal of the American Chemical Society2000, pp. 5710-5717.
    82. D. Ben-Ishai, and A. Berger, “Cleavage of N-Carbobenzoxy Groups by dry Hydrogen Bromide and Hydrogen Chloride,” The Journal of Organic Chemistry1952, pp. 1564-1570.
    83. D.F.G. Brown, A.M. MacKay, and A. Turek, “Preparation of stable silica standard solutions in rock analyses using lithium tetraborate,” Analytical Chemistry1969, pp. 2091-2091.
    84. G. Subramanian, R.P. Hjelm, T.J. Deming, G.S. Smith, Y. Li, and C.R. Safinya, “Structure of complexes of cationic lipids and poly (glutamic acid) polypeptides: A pinched lamellar phase,” Journal of the American Chemical Society2000, pp. 26-34.
    85. A.M. Felix, E.P. Heimer, T.J. Lambros, C. Tzougraki, and J. Meienhofer, “RAPID REMOVAL OF PROTECTING GROUPS FROM PEPTIDES BY CATALYTIC TRANSFER HYDROGENATION WITH 1,4-CYCLOHEXADIENE,” Journal of Organic Chemistry1978, pp. 4194-4196.
    86. X. Peng, and X. Kaplan, “Biomaterial coatings by stepwise deposition of silk fibroin,” Langmuir2005, pp. 24.
    87. G. Fasman, E. Bodenheimer, and C. Lindblow, “Optical Rotatory Dispersion Studies of Poly-L-tyrosine and Copolymers of L-Glutamic Acid and L-Tyrosine. Significance of the Tyrosyl Cotton Effects with Respect to Protein Conformation*,” Biochemistry1964, pp. 1665-1674.
    88. J. Cheung, W. Stockton, and M. Rubner, “Molecular-level processing of conjugated polymers. 3. Layer-by-layer manipulation of polyaniline via electrostatic interactions,” Macromolecules1997, pp. 2712-2716.
    89. S. Yang, and M. Rubner, “Micropatterning of polymer thin films with pH-sensitive and cross-linkable hydrogen-bonded polyelectrolyte multilayers,” Journal of the American Chemical Society2002, pp. 2100-2101.
    90. S. Sukhishvili, and S. Granick, “Layered, erasable, ultrathin polymer films,” Journal of the American Chemical Society2000, pp. 9550-9551.
    91. S. Sukhishvili, and S. Granick, “Layered, erasable polymer multilayers formed by hydrogen-bonded sequential self-assembly,” Macromolecules2002, pp. 301-310.
    92. P. Haris, “Fourier transform infrared spectroscopic studies of peptides: potentials and pitfalls,” ACS Publications, 2000, pp. 54-95.
    93. S. Prestrelski, N. Tedeschi, T. Arakawa, and J. Carpenter, “Dehydration-induced conformational transitions in proteins and their inhibition by stabilizers,” Biophysical Journal1993, pp. 661-671.
    94. M. Rozenberg, and G. Shoham, “FTIR spectra of solid poly-L-lysine in the stretching NH mode range,” Biophysical chemistry2007, pp. 166-171.
    95. D.M. Dotzauer, J. Dai, L. Sun, and M.L. Bruening, “Catalytic membranes prepared using layer-by-layer adsorption of polyelectrolyte/metal nanoparticle films in porous supports,” Nano letters2006, pp. 2268.
    96. D.G. Shchukin, and H. Mohwald, “Urea photosynthesis inside polyelectrolyte capsules: Effect of confined media,” Langmuir2005, pp. 5582-5587.
    97. D. Goia, and E. Matijevi “Preparation of monodispersed metal particles,” New Journal of Chemistry1998, pp. 1203-1215.
    98. R. Zanella, S. Giorgio, C. Shin, C. Henry, and C. Louis, “Characterization and reactivity in CO oxidation of gold nanoparticles supported on TiO2 prepared by deposition-precipitation with NaOH and urea,” Journal of Catalysis2004, pp. 357-367.
    99. S. Ravaine, G.E. Fanucci, C.T. Seip, J.H. Adair, and D.R. Talham, “Photochemical Generation of Gold Nanoparticles in Langmuir- Blodgett Films,” Langmuir1998, pp. 708-713.
    100. J. Xie, J.Y. Lee, D.I.C. Wang, and Y.P. Ting, “Silver nanoplates: from biological to biomimetic synthesis,” ACS nano2007, pp. 429-439.
    101. S.K. Bhargava, J.M. Booth, S. Agrawal, P. Coloe, and G. Kar, “Gold nanoparticle formation during bromoaurate reduction by amino acids,” Langmuir2005, pp. 5949-5956.
    102. E. Kharlampieva, J.M. Slocik, T. Tsukruk, R.R. Naik, and V.V. Tsukruk, “Polyaminoacid-Induced Growth of Metal Nanoparticles on Layer-by-Layer Templates,” Chemistry of Materials2008, pp. 5822-5831.
    103. P.R. Selvakannan, A. Swami, D. Srisathiyanarayanan, P.S. Shirude, R. Pasricha, A.B. Mandale, and M. Sastry, “Synthesis of aqueous Au core-Ag shell nanoparticles using tyrosine as a pH-dependent reducing agent and assembling phase-transferred silver nanoparticles at the air-water interface,” Langmuir2004, pp. 7825-7836.
    104. J.S. Jan, and D.F. Shantz, “Biomimetic silica formation: Effect of block copolypeptide chemistry and solution conditions on silica nanostructure,” Advanced Materials2007, pp. 2951-2956.
    105. H. Menzel, S. Horstmann, P. Behrens, P. Barnreuther, I. Krueger, and M. Jahns, “Chemical properties of polyamines with relevance to the biomineralization of silica,” Chemical Communications2003, pp. 2994-2995.
    106. R.K. Iler, “The chemistry of silica,” 1979.
    107. E. Mine, A. Yamada, Y. Kobayashi, M. Konno, and L.M. Liz-Marzan, “Direct coating of gold nanoparticles with silica by a seeded polymerization technique,” Journal of colloid and interface science2003, pp. 385-390.
    108. P. Buffat, and J. Borel, “Size effect on the melting temperature of gold particles,” Physical Review A1976, pp. 2287-2298.
    109. A. Wolf, and F. Schuth, “A systematic study of the synthesis conditions for the preparation of highly active gold catalysts,” Applied Catalysis A: General2002, pp. 1-13.
    110. K. Esumi, K. Miyamoto, and T. Yoshimura, “Comparison of PAMAM-Au and PPI-Au nanocomposites and their catalytic activity for reduction of 4-nitrophenol,” Journal of colloid and interface science2002, pp. 402-405.
    111. K. Hayakawa, T. Yoshimura, and K. Esumi, “Preparation of Gold- Dendrimer Nanocomposites by Laser Irradiation and Their Catalytic Reduction of 4-Nitrophenol,” Langmuir2003, pp. 5517-5521.
    112. Y.C. Chang, and D.H. Chen, “Catalytic reduction of 4-nitrophenol by magnetically recoverable Au nanocatalyst,” Journal of hazardous materials2009, pp. 664-669.
    113. N. Pradhan, A. Pal, and T. Pal, “Silver nanoparticle catalyzed reduction of aromatic nitro compounds,” Colloids and Surfaces A: Physicochemical and Engineering Aspects2002, pp. 247-257.
    114. J. Lee, J.C. Park, J.U. Bang, and H. Song, “Precise Tuning of Porosity and Surface Functionality in Au@ SiO2 Nanoreactors for High Catalytic Efficiency,” Chemistry of Materials2008, pp. 5839-5844.
    115. J. Lee, J.C. Park, J.U. Bang, and H. Song, “Precise Tuning of Porosity and Surface Functionality in Au@ SiO2 Nanoreactors for High Catalytic Efficiency,” Chem. Mater2008, pp. 5839-5844.
    116. J. Lee, J.C. Park, and H. Song, “A nanoreactor framework of a Au@ SiO2 yolk/shell structure for catalytic reduction of p-nitrophenol,” Advanced Materials2008, pp. 1523-1528.
    117. P. Liu, and M. Zhao, “Silver nanoparticle supported on halloysite nanotubes catalyzed reduction of 4-nitrophenol (4-NP),” Applied Surface Science2009, pp. 3989-3993.
    118. S. Panigrahi, S. Basu, S. Praharaj, S. Pande, S. Jana, A. Pal, S. Ghosh, and T. Pal, “Synthesis and size-selective catalysis by supported gold nanoparticles: Study on heterogeneous and homogeneous catalytic process,” 2007.
    119. T.J. Deming, “Polypeptide materials: New synthetic methods and applications,” Advanced Materials2004, pp. 299-311.
    120. T.J. Deming, “Polypeptide and polypeptide hybrid copolymer synthesis via NCA polymerization,” Peptide Hybrid Polymers2006, pp. 1-18.
    121. J. Rao, Y. Zhang, J. Zhang, and S. Liu, “Facile Preparation of Well-Defined AB2 Y-Shaped Miktoarm Star Polypeptide Copolymer via the Combination of Ring-Opening Polymerization and Click Chemistry,” Biomacromolecules2008, pp. 2586-2593.
    122. I. Shepherd, “Study of poly-L-lysine conformations in aqueous methanol solution by using polarized Raman techniques,” Biochemical Journal1976, pp. 543.
    123. K. Watanabe, K. Muto, and T. Ishii, “Conformational analysis of poly (L-tyrosine) and tyrosyl oligomers based on backbone circular dichroism spectra obtained by fluorescence-detected circular dichroism,” Biospectroscopy1998, pp. 103-111.

    下載圖示 校內:2012-08-03公開
    校外:2012-08-03公開
    QR CODE