簡易檢索 / 詳目顯示

研究生: 蘇育辰
Su, Yu-Chen
論文名稱: 地下水位升降引致地層依時壓縮行為之地層壓縮量預測
Prediction of the strata compression based on time-dependent compressibility behavior induced by groundwater level fluctuation
指導教授: 張文忠
Chang, Wen-Jong
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 110
中文關鍵詞: 地層下陷資料驅動地下水位升降K0 壓密儀依時壓縮行為壓縮量預測
外文關鍵詞: land subsidence, data-driven, groundwater level fluctuation, K₀ consolidation system, time-dependent compression behavior, compression prediction
相關次數: 點閱:51下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 地層下陷為沖積層普遍之地質問題,可能導致基礎設施損害,本研究結合現地監測資料之地下水位及層別沉陷數據與室內力學壓縮試驗結果,建立一套以資料驅動(Data Driven)為基礎之壓縮預測模型,以提供地層下陷防治擬定之依據。關於地層下陷的成因,既有研究顯示其原因和地下水位升降相關,因此本研究使用基於 Rowe Cell 概念設計之 K0 壓密儀進行試驗,使元素試驗條件貼近實際地層狀況,進而模擬地下水位震盪對土壤元素所造成之依時壓縮行為。試驗分別以兩種不同地下水位變化條件做為輸入,第一種地下水位變化條件是將過去歷史水位監測記錄作為輸入值,用以擬合過往層別沉陷數據,並決定現地土壤堆積狀態;第二種地下水位變化條件是使用固定正弦形式之水位變化振幅作為試體應力加載條件,模擬旱雨季差異造成之地下水位升降行為。試驗結果顯示,主要壓縮行為發生於孔隙水壓(地下水位)下降區間。依據試驗結果,建立兩種不同地下水位變化模式下之壓縮(密)量預測模型,提供不同地下水位變化下之地層壓縮量變化,可做為未來地層下陷防治措施之參考依據。

    Land subsidence is a common geological issue in alluvial formations and may lead to damage to infrastructure. This study integrates field monitoring data including groundwater levels and stratified settlement measurements with laboratory mechanical compression test results to establish a data-driven compression prediction model. The goal is to provide a scientific basis for planning land subsidence mitigation measures.Previous research indicates that land subsidence is closely related to fluctuations in groundwater levels. Therefore, this study employs a K₀ consolidation apparatus designed based on the Rowe Cell concept to conduct laboratory tests that closely simulate in-situ ground conditions. This setup enablesthe simulation of time-dependent soil compression behavior induced by oscillating groundwater levels. Two types of groundwater fluctuation conditions are used as input for the tests. The first condition utilizes historical groundwater level monitoring data to simulate past stratified subsidence and to determine the current state of soil deposition. The second condition applies sinusoidal groundwater fluctuations as the stress input to simulate seasonal variations in groundwater levels due to alternating dry and wet seasons.Test results show that the main compression behavior occurs during periods of decreasing pore water pressure (i.e., falling groundwater levels). Based on these results, two predictive models are developed corresponding to the two types of groundwater fluctuation conditions. These models can estimate the amount of soil compression under varying groundwater level changes, thereby serving as a reference for future land subsidence prevention and control strategies.

    摘要 I EXTENDED ABSTRACT II 誌謝 IX 目錄 X 表目錄 XIII 圖目錄 XIV 1 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 2 1.3 研究流程 2 1.4 研究架構 3 2 第二章 文獻回顧 5 2.1 土壤受地下水位升降所引致之壓縮行為 5 2.1.1 含水層 5 2.1.2 阻水層 6 2.2 土壤受反覆載重之壓縮(密)行為 8 2.2.1 震陷理論 8 2.2.2 受反覆載重之顆粒性土壤壓縮行為 10 2.2.3 顆粒性土壤受大量反覆載重週期之壓縮行為與預測模型 11 2.2.4 細顆粒土壤受反覆載重之壓縮行為 14 2.3 重模試體準備方法 15 2.3.1 濕搗法(Moist Tamping, MT) 16 2.3.2 空氣霣落法(Air Pluviation, AP) 16 2.3.3 濕式霣落法(Water Pluviation, WP) 16 2.3.4 霧式霣落法(Mist Pluviation, MP) 16 2.4 Rowe Cell 17 2.5 壓密試驗方法 18 2.6 試驗站監測資料及下陷概況 19 2.6.1 磁環分層式地層下陷監測井 20 2.6.2 地下水位觀測井 22 2.6.3 試驗站下陷概況 25 3 第三章 試驗方法及儀器設備 27 3.1 試驗方法 27 3.2 試驗設備與系統 29 3.2.1 試驗程式 29 3.2.2 高壓K0壓密儀 29 3.2.3 軸向加載 31 3.2.4 壓力面板 31 3.2.5 資料擷取系統 32 3.2.6 試驗系統控制結果 32 3.3 試體準備 35 3.3.1 含水層試體準備及架設 35 3.3.2 阻水層試體準備與架設 40 3.4 試驗規劃 41 3.4.1 含水層 41 3.4.2 阻水層 44 4 第四章 含水層K0試驗與擬合 47 4.1 含水層現地水壓波動加載壓縮試驗 47 4.2 含水層固定振幅孔隙水壓波動壓縮試驗 51 4.2.1 固定振幅孔隙水壓波動壓縮試驗結果與討論 51 4.2.2 固定振幅孔隙水壓波動壓縮試驗擬合結果 58 5 第五章 阻水層K0試驗與擬合 66 5.1 阻水層等速率應變壓密試驗 66 5.2 阻水層變載重壓密試驗 67 5.3 固定振幅反覆壓密試驗 69 5.3.1 固定振幅反覆壓密試驗結果 69 5.3.2 固定振幅反覆壓密試驗擬合結果 73 6 第六章 預測模式建立 76 6.1 預測流程 76 6.2 以歷史水位變化作為應力加載條件進行預測 78 6.3 以正弦波作為應力加載條件進行預測 81 6.3.1 由固定振幅孔隙水壓波動試驗預測含水層地層壓縮量 81 6.3.2 由固定振幅反覆壓密試驗預測阻水層地層壓縮量 85 7 第七章 結論與建議 87 7.1 結論 87 7.2 建議 87 8 參考文獻 89

    1. 周仕勳(2014),「以反覆三軸K0壓縮試驗探討週期性靜水壓升降對飽和顆粒性土壤壓縮特性之影響」,國立成功大學土木工程所碩士論文。
    2. 林正煒(2024),「地下水位升降引致阻水層沉陷之機制與預測」,國立成功大學土木工程所碩士論文。
    3. 蔡函叡(2013),「飽和顆粒性土壤於K0反覆荷重下之壓縮行為探討」,國立成功大學土木工程所碩士論文。
    4. 蔣宜芳(2019),「考慮孔隙水壓波動下飽和粉土質砂土壓縮預測模式」,國立成功大學土木工程所碩士論文。
    5. 周仕勳、張文忠、尤仁弘、程振翰、林正煒(2023),「含水層砂土壤考量震陷效應之壓縮評估模式建立」,2023工程永續與土木防災研討會。
    6. 張文忠、周仕勳、程振翰、林政偉、尤仁弘、程運達(2022),「以室內複合壓縮試驗探討雲林現地含水層砂土壓縮機制」,第十九屆大地工程學術研討會暨科技部成果發表會。
    7. 經濟部水利署(2021),「雲林地區深層壓縮參數調查與資料分析」。
    8. 經濟部水利署(2022),「111年雲林地區壓縮參數調查與資料分析」。
    9. 經濟部水利署(2023),「彰化與雲林地區地層下陷監測井監測及分析」。
    10. 經濟部水利署(2023),「112年雲林地區壓縮參數調查與資料分析」。
    11. 經濟部水利署(2024),「113年彰化地區壓縮參數調查與資料分析」。
    12. ASTM. (2008). “Standard Test Method for One-Dimensional Consolidation Properties of Soils Using Controlled-Strain Loading” ASTM Standard D4186-06. American Society of Testing Materials, West Conshohocken, Pa, 502-533.
    13. ASTM. (2011). “Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System)” ASTM Standard D2487-11. American Society of Testing Materials, West Conshohocken, Pa.
    14. Chong, S.H., Santamarina, J.C. (2016)“Sand subjected to vertical repetitive loading under zero lateral strain: Accumulation models, terminal densities, and settlement. ”Can. Geotech. J. 53, 12, 2039-2046.
    15. Chang, W.J., Chou, S.H, Huang, A.B. (2017). “Physical simulation of aquifer compression due to groundwater fluctuation.” Engineering Geology, 231, 157-164.
    16. Chang, W.J., Chou, S.H. (2019). “Experimental study on shakedown compression of saturated granular soils due to pore pressure variation.” Journal of GeoEngineering, 14, 4, 247-257.
    17. Huang, A.B, Chang W.J, Hsu, H.H., Huang, Y.J. (2015). “A mist pluviation method for reconstituting silty sand specimens.” Engineering Geology, 188, 1-9.
    18. Johnson, K.L. (1986). “Plastic Flow, Residual Stresses and Shakedown in Rolling Contact.” Proceedings of the 2nd International Conference on Contact Mechanics and Wear of Rail/Wheel Systems.
    19. Kuerbis, R., Vaid, V.P. (1988). “Sand sample preparation – The slurry deposition method” Soil and Foundations, 28, 4, 107-118.
    20. Lambe, T.W. (1951). “Soil Testing for Engineers.” John Wiley & Sons,Inc, New York.
    21. Lee, K. (1981). “Consolidation with constant rate of deformation.” Géotechnique 31, 2, 215-229.
    22. Park J., Santamarina, J.C. (2019). “Sand response to a large number of loading cycles under zero-lateral-strain conditions: evolution of void ratio and small-strain stiffness.” Géotechnique 69, 6,501-503.
    23. Park J., Santamarina, J.C. (2023). “Sand subjected to repetitive loading cycles and associated granular degradation.” Journal of GeoEngineering, 149, 11, 04023111.
    24. Rowe, P.W., Barden, L (1966). “A new consolidation cell.” Geotechnique 16, 2, 519-539
    25. Zhang, J., Wong, T.F., Yanagidani, T., and Davis, D.M. (1990) “Pressure-induced microcracking and grain crushing in Berea and boise sandstones: acoustic emission and quantitative microscopy measurements” Mechanics of Materials, 9, 1-15.

    無法下載圖示 校內:2027-08-01公開
    校外:2027-08-01公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE