| 研究生: |
蘇理中 Su, Li-chung |
|---|---|
| 論文名稱: |
應用雲紋干涉儀分析打線封裝產品之熱變形行為 Analysis of Thermal Deformation in Wire-bonded Stacking Die Packages by Moiré Interferometry |
| 指導教授: |
黃聖杰
Hwang, Sheng-jye |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 平面位移場 、雲紋干涉儀 、可靠度 、翹曲 、熱機械變形 、相位移技術 |
| 外文關鍵詞: | warpage, reliability, moiré Interferometry, phase-shifting technique, thermal-mechanical deformations |
| 相關次數: | 點閱:99 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
熱引發應力為影響封裝結構可靠度的一重要因素。矽晶堆疊數目不斷增加下,必須縮短矽晶的厚度及尺寸,這將增加實驗上分析封裝體受力行為的困難度。利用實驗方法量測封裝體受熱所產生之翹曲及應變場分佈可幫助我們了解產品受力行為。本論文使用雲紋干涉儀量測封裝體的變形量。此外,更高精度的相位移技術被發展出,可用以勾勒出更細微區域的應變場分佈概況。它的解析度為傳統干涉儀的八倍或更高,可達到52nm。因此,由雲紋干涉圖像可精確地分析產品的位移與應變量。
本研究主要量測BGA封裝產品受到熱負載下之熱機械變形,包含單晶片構裝、多晶片構裝及案例分析。實驗主軸分為兩個目標:第一為由典型的雲紋圖像獲取產品的平面位移場;第二為發展出相位移技術,拍攝產品的相位移圖,了解產品應力集中或是最具可靠度因素的區域,並計算這些區域的應變場分佈情形,最後,將這些量測數據與有限元素分析法模擬的結果做比對,分析及討論兩者的差異性。
由實驗量測的典型或是高解析度的雲紋干涉條紋的分布可知,不管是單晶片、多晶片構裝,最具可靠度因素的區域來自矽晶角邊、矽晶與矽晶介面及矽晶與基材界面。此外,封膠區域也存在較大的應變量。另一方面,在堆疊型晶片中,有限元素分析模擬的結果往往低估產品存在的翹曲量與應變值,造成低估的原因除了來自模擬程序中許多簡化的假設,另一個可能的原因來自於IC製程中所殘留的翹曲與應變量。
在LGA案例分析中,有限的封裝空間下,矽晶尺寸越來越薄,當產品產生變形時,大的彎曲應力很有可能導致矽晶斷裂;在量測結果顯示,大的剪向應變發生在最上層的矽晶,但更嚴重的正向應變,沿著y方向發生在最底層的矽晶。
Thermally induced stresses play an important role in controlling the structural reliability. As the demand for increased number of stacking dies to shrink die thickness and size, it will increase the difficulty to analyze the behavior of products under thermal loads experimentally. By using experimental methodology, it will help us to analysis the warpage and strain distributions of packages under thermal loads. In this work, the warpage of packages are measured by moiré interferometry. Moreover, high-resolution phase-shifting moiré interferometry system was developed by Paul S. Ho’s group at the University of Texas at Austin to calculate the strain distributions in tiny region. The resolution of moiré interferometry is up to 8 times greater than conventional moiré interferometry, achieves to 52nm. Hence, accurately determine displacements and strains can be determined by moiré interference fringe.
In this study, we focus on measuring the thermal-mechanical deformations of BGA packages, including single-chip packages, multi-chip packages and an example of LGA packages. This study contains two major objectives. The first objective is to obtain in-plane displacement by regular moiré fringes. The second objective is to carry out phase-shifting technique to take phase maps, and we found the stress concentrations in packages that will most critical areas. Finally, we compared the experimental data with simulation results to find the differences between them.
According to experimental results, the most critical issue areas appear to be the die corner、die/die interface and die/substrate interface in both of single-chip or multi-chip packages. This result is got from the moiré fringe distributions in both regular and high-resolution phase maps. Besides, compound region also have larger strain. Furthermore, the FEA results always underestimate the warpage of stacking die packages. These are due to the simplified assumptions in simulation, and the neglects of residual stress and warpage in IC processes are possibly another reason.
In the case of LGA packages, in which die sizes keep going smaller under thinner and lighter packages design, when packages are under thermal loads, it will induce bending stresses, and possibly cause die crack. According to the results of measurement, the upper chip has severe shear strain, but more severe normal strain along y-direction takes place on the bottom chip.
[1.1] 鐘文仁, 陳佑任, IC封裝製程與CAE應用, 全華科技圖書公司, 台北市, (2005)。
[1.2] 游晶瑩, “大尺度面積型態構裝錫球之可靠度分析,” 國立清華大學博士論文(2005.3)。
[1.3] 林勇志, “CSP封裝產品在循環熱應力作用下之可靠度分析,” 國立成功大學機械工程學系碩士論文(2000,6)。
[1.4] R. B. R. van Silfhout, J. G. J. Beijer, K. Zhang, and W. D. van Driel, “Modelling Methodology for Linear Elastic Compound Modelling Versus Visco-Elastic Compound Modelling,” Proc. 6th. Int. Conf. Therm. and Mech. Simul. Exp. Microelectron. MicroSyst., EuroSimE2005, Berlin, Germany, 2005 pp. 483.
[1.5] 邱碧秀, 微系統封裝原理與技術, 滄海書局, 台北市, (2005)
[1.6] 龔哲立, “電子構裝封膠之黏彈性模型及其製程翹曲之模擬,” 國立成功大學機械研究所碩士論文(2008,7)
[1.7] Lord Rayleigh, “On the Manufacture and Theory of Diffraction Grating,” Phil. Mag. Series4, pp. 81-93(1874).
[1.8] J. Guild, The Interference Systems of Crossed Diffraction Gratings: Theory of Moirè Fringes, Oxford University Press, New York(1956).
[1.9] F. M. Gerasimov, V. P. Sergeev, I. A. Teltevskii, V. V. Sergeev, B. V. Marichev, “The Use of Moirè Interference Fringes to Control the Ruling of Diffraction Gratings,” Optics and Spectroscopy, Vol. 19, pp. 152-156
(1965).
[1.10] N. Wadsorth, M. Marchant, B. Billing, “Real-Time Observation of In-Plane Displacements of Opaque Surfaces,” Optics Laser Technol., Vol. 5, No. 3, pp. 119-123(1973).
[1.11] R. Czarnet, “New Methods in Moirè Interferometry”, PhD dissertation, Virginia Polytechnic Institute and State University, Blacksburg, Virginia,USA(1984).
[1.12] M. L. Baschore and D. Post, “High-Frequency, High-Reflectance Transferable Moirè Gratings”, Exp. Tech., Vol. 8, No. 5, pp. 29-31(1984).
[1.13] R. Czarnek, D. Post, and D. Joh, “Shear strains in a graphite/PEEK beam by moiré interferometry with carrier fringes,” Experimental Mechanics, Vol. 27, pp. 246-249 (1987).
[1.14] A.F. Bastawros and A.S. Voloshin, “Thermal strain measurements in electronic packages through fractional fringe moiré interferometry,” ASME Journal of Electronic Packaging, Vol. 112, pp. 303-308(1990).
[1.15] D. Post and J.D. Wood, “Determination of Thermal Strain by Moirè Interferometry,” Experimental Mechanics, pp. 318-322(1989).
[1.16] A. F. Bastawros, A. S. Voloshin, and P. Rodogoveski, “Experimental Validation of Fractional Fringe Moirè Interferometry,” SEM Spring Conference on Experimental Mechanics, pp. 406-410(1989).
[1.17] A.F. Bastawros, A. S, Voloshin, “Mixed Mode Stress Intensity Factors by Fractional Fringe Moirè Interferometry”, Proc. 1990 Society of Experimental Mechanics Spring Conf., pp.69-75(1990).
[1.18] Y. Guo, and C.G. Woychik, “Thermal strain measurements of solder joints in second level interconnections using moiré interferometry,” ASME Journal of Electronic Packaging, Vol. 114, pp. 88-92(1992).
[1.19] B.T. Han, Y. Guo, and C.K. Lim, Applications of moiré and microscopic moiré interferometry to electronic packaging product development, Paper presented at the Fourth Annual IEEE Dual-Use Technologies and Application Conference, Rome, N.Y., May. (1994)
[1.20] B.T. Han, Y. Guo, and C.K. Lim, Applications of interferometric techniques to verification of numerical model for microelectronics packaging design. Electrical and Electronic Packaging, Advances in Electronic Packaging, ASME, 10 (2): 1187-1194. (1994)
[1.21] Y. Guo, C.K. Lim, W.T. Chen and C.G. Woychik, “Solder Ball Connect (SBC) assemblies under thermal loading: I. Deformation measurement via moiré interferometry and its interpretation,” IBM Journal of Research and Development, Vol. 37, No. 5, pp. 635-648(1993).
[1.22] H.C. Choi, Y. Guo, W. LaFontaine and C.K. Lim., “Solder Ball Connect (SBC) assemblies under thermal loading: II. Strain analysis via image processing, and reliability considerations,” IBM Journal of Research and Development, Vol. 37 No. 5, pp. 649-659(1993).
[1.23] T. Y. Wu, Y. Guo, and T. Chen, “Thermal-mechanical strain
characterization for printed wiring boards,” IBM Journal of Research and Development, Vol. 37, No. 5, pp. 621-634(1993).
[1.24] J.S. Corbin, “Finite element analysis for Solder Ball Connect (SBC) structural design optimization,” IBM Journal of Research and Development, Vol. 37, No. 5, pp. 585-596(1993).
[1.25] Mikel R. Miller, Xiang Dai, Guotao Wang and Paul S. Ho, “Study of Thermal Deformation in High-Density Electric Packages Using High Resolution Moiré Interferometry”, Technical Symposium ChipMOS pp. 231-236(2001).
[1.26] Mikel Rolf Miller, ”Interfacial Adhesion and Subcritical Debonding of Low-k Dielectrics in Flip-Chip-Packaged Copper/Low-k Interconnect Structures,” The University of Texas at Austin, August 2000.
[1.27] Guotao Wang, “Thermal Deformation of Electronic Packages and Packaging Effect on Reliability for Copper/Low-k Interconnect Structures,” The University of Texas at Austin, May 2004.
[2.1] Daniel Post, Bongtae Han and Peter Ifju, High Sensitivity Moiré: Experimental Analysis for Mechanics and Materials, Springer-Verlag, New York(1994).
[2.2] 參照[1.27]。
[2.3] Lois Elizabeth Khin Tsun Yong ,”Study of Thermal Deformation in Wire-Bonded Stacked Die Packages by Moiré Interferometry,” The University of Texas at Austin, May 2002.
[2.4] V. Srinivasan, H.C. Liu and M. Halioua, “Automated phase-measuring
profilometry: a phase-mapping approach,” Applied Optics, Vol. 24, No. 2, pp. 185-188(1985).
[2.5] M. Chang, C.-P. Hu and J.C. Wyant, “Phase Shifting Holographic Interferometry,” Conf. Proc. SPIE Optics in Engineering Measurement, Vol. 599, pp. 149-154(1985).
[2.6] 參照[1.27]。
[2.7] Mikel R. Miller, I. Mohammed, X. Dai; N. Jiang; and P. S. Ho, “Analysis of Flip-chip Packages using High Resolution Moiré Interferometry,” Proc. 49th Electronic Components and Technology Conference, pp. 979-986 (1999).
[2.8] S. Liu, J. Wang, D. Zou, X. He, Z. Qian and Y. Guo, “Resolving Displacement Field of Solder Ball in Flip-Chip Package by both Phase Shifting Moiré Interferometry and FEM Modeling,” Proc 48th Electronic Components and Technology Conf, Seattle, WA, May 1998, pp.1345-1353
[3.7] 參見[2.4]與[2.5]。
[4.1] 鄧湘榆, “IC封裝元件翹曲分析之研究,” 國立成功大學機械工程研究所博士
論文(2004.6)。