研究生: |
林沛均 Lin, Pei-Chun |
---|---|
論文名稱: |
木構造柱梁接點以新開發金屬組件接合的旋轉行為 Rotational behaviour of column-and-beam timber joint composed of aluminum connectors |
指導教授: |
葉玉祥
Yeh, Yu-Hsiang |
學位類別: |
碩士 Master |
系所名稱: |
規劃與設計學院 - 建築學系 Department of Architecture |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 166 |
中文關鍵詞: | 福杉 、銑槽 、鋁合金組件 、柱梁接點 、旋轉行為 |
外文關鍵詞: | Cunninghamia lanceolata, slot milling, aluminum connectors, column-and-beam joint, rotational behaviour |
相關次數: | 點閱:143 下載:16 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要開發新金屬組件於木構造柱梁接點的旋轉行為,並選用國產福杉為對象,以足尺試驗評估金屬組件的抗彎性能,再以自攻螺絲補強,比較補強前後於結構性能的差異。
首先,本研究開發兩種不同長度的金屬組件,評估金屬組件的彎矩性能,規格為40 x 120 mm與40 x 140 mm,厚度為12 mm。木構造柱梁接點使用國產福杉製作,柱構件為實木,長為1200 mm,斷面尺寸為120 x 120 mm;梁構件為集成材,長為1000 mm,斷面尺寸為120 x 180 mm,部分梁構件的端部作銑槽處理,而銑槽尺寸與金屬組件的規格相符。本研究的補強材料是採用直徑8 mm的全牙自攻螺絲,藉此提升後補強的抗彎性能。
柱梁接點的旋轉實驗主要評估三種參數對於接點結構行為的影響。先是兩種不同長度的金屬組件,再來是梁試體之底部斷面是否銑槽,最後是有無使用自攻螺絲補強。經過18組足尺力學實驗,評估柱梁接點的旋轉勁度、極限彎矩、降伏彎矩與延展性能,探討不同參數對於柱梁接點的抗彎性能影響,與其接合系統的破壞型態。
研究結果發現,鎖固於柱梁試體的金屬組件長度增加,其金屬組件於柱梁試體上的力臂亦增加,故其旋轉勁度、極限彎矩與降伏彎矩性能提升。而國產福杉試體是否銑槽對其柱梁接點的性能影響,可以發現在不同長度的金屬組件中,銑槽試體比未銑槽試體之極限彎矩提升,但旋轉勁度並沒有提升。由此可知無論木材試體是否有銑槽,都可以帶來不一樣的結構性能。
接著,柱梁試體在初次實驗後,試體上已有部分的纖維破壞及金屬組件損壞,以至於難以修復回原本的樣態,後補強的旋轉進勁度幾乎比之前少了60 %以上。不過因有自攻螺絲束制構件的變形,故其極限彎矩與降伏彎矩而有效提升。
觀察木構造柱梁接點的破壞模式,主要分成以下三個類別:(1)金屬組件(公)與柱試體分開佔72%,推測其原因是公扣件的自攻螺絲數量較金屬組件母扣件少,故多數呈現此種破壞型態;(2)金屬組件彎曲變形佔17%;(3)公母組件之間分開佔11%。未補強的破壞模式大致為第(1)種破壞模式,破壞後補強所衍生的破壞模式為第(3)種破壞模式。
總結來說,本研究開發出來的金屬組件,可以提供良好的抗彎強度與旋轉勁度,即使簡化金屬組件的施工複雜度,依然保有不遜於國外商用產品的性能。因此,在國內木構造日新月異的情況下,本研究開發新金屬組件於木構造柱梁接點,進而推動國內開發抗彎型接點所使用的金屬組件,奠定了國內開發與設計金屬組件的基礎,以及透過評估方法來檢討設計的優劣。
The purpose of the research is to develop new aluminum connectors for rotational behaviour of column-and-beam timber joint. We selecte domestic Cunninghamia lanceolata as material, evaluate their moment strength by full-scale tests. The self-tapping screws are used for reinforcement. The differenciation of the structural performance before and after the reinforcement are compared.
First of all, two types of aluminum connectors with different lengths, 40 x 120 mm and 40 x 140 mm, with the same thickness of 12 mm, are developed to evaluate their structural performance. The column-and-beam timber joints are made from domestic Cunninghamia lanceolata. The columns are solid timber with a length of 1200 mm and cross-section of 120 x 120 mm. The beams are glued-laminated timber with the length of 1000 mm and the cross-section of 120 x 180 mm. The terminal part of partial beam construction is made of slot milling treatment. At the same time, the measurement of the slot milling corresponds to the scale of the aluminum connectors. The reforcement material of the research adopts the full-thread self tapping screws, with the diameter of 8 mm, in order to promote the moment strength of the repaire-reinforcement.
The rotational experiment of the column-and-beam joint mainly evaluate the influence of three types of parameters about the contact construction performance. The first stage is to employ two different lengths of aluminum connectors. The second stage proceeds with whether the bottom section of beam specement deals with slot milling. The last stage is to reinforce by the self-tapping screws or not.
By way of eighteen groups of full-scale experiments in solid mechanics, the rotational stiffiness of the column-and-beam joint, the ultimate moment, the yield moment, and the peformance of ductility are evaluated. Moreover, the influence of the moment strength with the failure mode of the joint system are explored by differnet parameters at the same time.
The study demonstrates that while the length of the aluminum connectors chained to the column-and-beam specimen increases, the tension arm of it does, too. Therefore, the rotational stiffness, the ultimate moment, and the yield moment are promoted. In the meantime, the influence of the slot milling of Cunninghamia lanceolata specimen and its performance of the column-and-beam joint can be discovered in different lengths of the aluminum connectors. The ultimate moment of the slot milling specimen advances the unmilling one. However, the rotational stiffiness is not promoted. As a result, whether the timber material is millied with slot or not, it still can bring different constructional performance.
The timber specimens and aluminum connectors have been damaged after the first experiment. So, it is difficult to restore them as their original condition. However, the study shows that whether the specimens are slot milling or not, their bending strength has increased basically because of the reinforcement of self-tapping screws.
The study shows three failure modes of column-and-beam timber joint:
(1) The separation between the male connector and the column accounts for 72% because the number of self-tapping screws of the male connector is less than that of the female connectors.
(2) Bending deformation of aluminum connectors accounts for 17%.
(3) The separation between male and female connectors accounts for 11%.
The non-reinforcement of failure mode is generally failure mode No.1 in general, and the repair-reinforcement of failure mode is failure mode No.3.
The aluminum connectors developed in the study provide quality bending moment and rotational stiffness for the column-and-beam timber joint. Although complex construction steps of aluminum connectors are simplified, they still maintain the performance not inferior to foreign commercial products.
Therefore, in the condition of Taiwan’s timber structure grows more and more rapidly, the study is developed and new aluminum connectors of columns-and-beam timber joints are shown. The study has further promotion of the domestic aluminum connectors to be used in moment strength of timber joints. For this reason, the study has laid the foundation for domestic development and design of aluminum connectors, as well as reviewing the advantage and disadvantage of the design through the assessment methodology.
一. 國外文獻:
[1] Abrahamsen RB, Malo KA (2014) Structural design and assembly of “treet”—A 14-storey timber residential building in Norway. WCTE 2014—World Conference on Timber Engineering, Proceedings.
[2] Smith I, Asiz A, Snow M, Chui YH. (2006). Possible Canadian/ISO approach deriving design values from test data. Florence, Italy: International Council for Research and Innovation in Building and Construction, CIB-W18/39-17-1, p.395- p.406.
[3] Masaeli, M. (2020). Scaling effect on the moment and shear responses of three types of beam-tocolumn connectors used in mass timber buildings. Engineering Structures, 208, 110329.
[4] Leijten, A.J.M., & Brandon, D. (2013). Advances in moment transfering dvw reinforced timber connections Analysis and experimental verification, Part 1. Construction and Building Materials, 43 (2013), p.614-p.622.
[5] Jaspart, Jean-Pierre. (1991). Study of semirigity of beam to column joints and of its influence on the strength and stability of steel frames (French), Ph.D. Thesis, University of Liege, Dept. of Applied Sciences, Belgium.
[6] ASTM D1761-20 (2020). Standard Test Methods for Mechanical Fasteners in Wood and Wood-Based Materials, ASTM International, West Conshohocken, PA 19428-2959, United States.
[7] Wood Works Case Study WW-021 (2017). John W. Olver Design Building, University of Massachusetts.
[8] 株式会社竹中工務店(2014, March)。 vol.26 竹中環境コンセプトモデル建築コンペティション。
二. 中文文獻:
[9] 內政部營建署(2011) 。木構造建築物設計及施工技術規範。內政部營建署。
[10] 美國木構造建築機構暨實例參訪出國報告書(2019)。內政部營建署。
[11] 蔡孟廷(譯) (2019)。世界新式木造建築設計:實踐都市高層木造建築的理論與實務全集(原作者:日經建築編)。臺北市:麥浩斯出版股份有限公司。
[12] 鄧書宇 (2013) 。柳杉集成材組合門型鋼架之結構性能研究。國立屏東科技大學木材科學與設計系碩士論文。
[13] 廖偉發(2007) 。台灣傳統建築直柳木接頭補強之力學行為。臺北科技大學土木與防災碩士論文。
[14] 葉民權、林玉麗、鍾佩芬、陳怡安、葉釋璟(2016) 。自攻螺絲應用於集成材柱梁接合之補強。林產工業35(3),第123-134頁。
[15] 葉民權、林玉麗、黃健評(2016) 。集成材以金屬連結件及自攻螺絲扣件接合之剪斷性能。台灣林業科學 31(2),第119-33頁。
[16] 葉民權、林玉麗、宋雲煒(2019) 。直交集成板金屬連結件接合之剪斷抵抗性能探討。臺灣林業科學。34(4),第235 - 262頁。
[17] 王劭瑋 (2020) 。國產福杉柱梁接點以商用鐵件補強的旋轉行為。國立成功大學建築研究所。
三. 網路資料:
[18] 交泰興有限公司 電子報25期SHERPA 木構造建築接頭系統
http://188.166.182.118/epaper121.html?hcb=1&fbclid=IwAR2aoEotkCyq7H2YYyzf6ASJnK6CWwjaMipgOWw-_T9UL4_FPcemfSwunvg
[19] SHERPA S20金屬組件
https://www.sherpa-connector.com/en/products/wood-connector/xs-m3464_244_shop_SHERPA-S-20.aspx?LNG=en
[20] SHERPA S20金屬組件專用螺絲
https://www.sherpa-connector.com/en/products/sherpa-fastener/special-screws/3576_295_shop_SHERPA-special-screw-4%2c5-x-50.aspx?LNG=en