| 研究生: |
林思賢 Lin, Szu-Hsien |
|---|---|
| 論文名稱: |
氨氣對於奈米碳管製程之影響 Effect of ammonia in the synthesis of carbon nano-tube |
| 指導教授: |
丁志明
Ting, Jyh-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 230 |
| 中文關鍵詞: | 奈米碳管 、氨氣 |
| 外文關鍵詞: | CNT, ammonia |
| 相關次數: | 點閱:73 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以熱式催化劑化學氣相沉積法成長具定向性的奈米碳管,採純鐵薄膜作為催化劑分別比較以氫氣及氨氣作為熱處理氣體時對成長奈米碳管之影響。除比較兩者作為熱處理氣體對成長奈米碳管之影響外,藉改變氨氣濃度探討其對於奈米碳管成長行為及型態的影響。
實驗結果顯示以氫氣作為熱處理氣體時,反應氣體中氨氣濃度低時可獲得具高密度的碳管;隨著氨氣濃度增加則碳管漸漸失去定向性。以氨氣作為熱處理氣體時,反應氣體中的氨氣濃度對碳管密度的影響不明顯;隨著氨氣濃度增加碳管亦漸失去定向性。氨氣濃度增加,碳管在拉曼光譜上的D band 強度值和G band強度值比(ID/IG ratio)將隨之增加,顯示碳管結構隨氨氣濃度增加至一定濃度而出現較多缺陷。
從EELS分析結果可知氮原子進入碳管結構後,隨數量的增加將產生雙鍵的碳-氮鍵結而非氮原子數量少時的碳-氮單鍵,而雙鍵結構會使得原本具準直性的碳管開始產生皺折及彎曲。場發射電流量測結果顯示碳管之定向性對其有相當大的影響,較整齊排列的碳管將有較佳場發射性質,但密度過高則有相反效果。在溫度方面,低於600℃將無法獲得成長良好的碳管,品質方面亦無法達到可應用之要求。
NH3 as a reaction gas had been profoundly used in various kind of process to synthesize carbon nanotube including plasma enhanced chemical vapor deposition (PE-CVD), microwave plasma enhanced chemical vapor deposition (MPE-CVD) and thermal chemical vapor deposition (thermal CVD) et al. Generally, the major effect of ammonia is to enhance the alignment of carbon naotubes but the mechanism of how NH3 promote such an important characteristic of carbon nanotube is still uncertain.
In this experiment, ammonia is used as heat treatment gas and is compared with hydrogen gas. Also, under the same total flow rate but different carbon source concentration, it’s introduced in reaction gas with different concentration to mix with carbon source, acetylene. Fe thin film which acts as catalyst will crack into nano-scale particles after the heat treatment because of internal and thermal strength. Then, through the chemical vapor deposition in horizontal tube furnace with mixing reaction gas at 1atmosphere, carbon nanotubes with good alignment were thus obtained.
SEM & TEM were used to analyze the microstructure of carbon nanotube and Raman spectroscopy was also used to analyze the quality of carbon nanotube. By adopting Field emission measurement of our laboratory, the field emission properties and the cycle-times test results were also acquired. Beside, EELS information of CNTs was collected during TEM observation.
Results show that carbon nanotubes growing with NH3 heat treatment has better alignment than those growing with H2 heat treatment and the quality of carbon nanotubes become worse when the NH3 concentration in mixing reaction gas getting higher. In the mean while, the field emission properties of carbon nanotubes don’t have close relation with the quality of CNTs obviously and it seems the field emission properties were more likely affected by the alignment of carbon nanotubes. With increasing concentration of ammonia, more and more bamboo-structure appears in carbon nanotubes. In EELS results, we observed the K edge signal of N which come from the interaction between electron beam and π* orbital of the pyridine-like orbital. The K edge signal of N show the existence of N atoms in CNT’s structure and we suspect this is the reason why the CNT’s loss it’s alignment when the concentration of NH3 exceed 50%.
By the theoretical analysis of Thermal Dynamics calculated by some research groups and our experimental results, this experiment gives the basic explanation of how ammonia affects the growth behavior of carbon nanotubes with different properties.
1. Kroto HW, Heath JR, Brien SCO, et al. Nature 318(1985),162
2. Iijima S. Nature 354(1991),56
3. Iijima S, Ichihashi T. Nature 363(1993),603
4. Bethune DS, Kiang CH, Devries MS. Nature 363(1993),605
5. Ma RZ, Wu J, Wei BQ, et al. J. Mater. Sci 33(1998),5243
6. Baughman RH, Cui C, Zakhidov AA, et al. Science 284(1999),1340
7. Batchtold A, Hadley P, Nakanishi T, et al. Science 294(2001),76
8. Collins PG, Zettl A, Bando H, et al. Science 278(1997),100
9. Chen Y, Shaw DT, Bai XD, et al. Appl. Phys. Lett 78(2001),2128
10. Kong J, Franklin NR, Zhou C, et al. Science 287(287),622
11. Kwo JL, Yokoyama M, Wang WC, et al. Diamond & Related Materials 9(2000),1270
12. Dai HJ, Hafner JH, Rinzler AG, et al. Nature 384(1996),147
13. Kim P, Lieber CM, et al. Science 1999(286),2148
14. Postma HWCH, Teepen, Yao Z, et al. Science 293(2001),76
15. Hummer G, Rasaigh JC, JP Noworyta. Nature 414(2001),188
16. M.S Dresselhaus , G. Dresselhaus and R.Saito, Physics of carbon nanotubes Imperial College Press ,1998, Carbon 33(1995),883
17. Saito R, Fujita M, Dresselhaus G, Dresselhaus MS. Appl. Phys. Lett 60(1992),2204
18. Saito R, Dresselhaus G, Dresselhaus MS. J. Appl. Phys. 73(1993),494
19. Charlier JC, Michenaud JP. Phys. Rev. Lett 70(1993),1858
20. Wong EW, Sheehan PE, Lieber CM. Science 277(1997),1971
21. Salvetat JP, Briggs GAD, Bonard JM, et al. Phys Rev Lett 82(1999),944
22. Poncharal P, Wang ZL, Ugarte D, et al. Science 283(1999)1513
23. Pan ZW, Xie SS, Lu L, et al. Appl. Phys. Lett 74(1999),3152
24. Tang J, Qin LC, Sasaki T, et al. Phys. Rev. Lett 85(2000),887
25. Dillon AC, Jones KM, Bekkedahl TA, et al. Nature 386(1997),377
26. Ye Y, Ahn CC, Witham C. Appl. Phys. Lett 74(1999),2307
27. Chen Y,Shaw DT, Bai XD, et al. Appl. Phys. Lett 78(2001),2128
28. Ebbeseen TW, Ajayan PM. Nature 358(1992),220
29. Ebbeseen TW, Hiura H, Fujita J, Ochiai Y, Matsui S, Tanigaki K, Chem. Phys. Lett 209(1993),83
30. Seraphin S, Zhou D, Jiao J, Withers C, Loufty R, Carbon 31(1993),685
31. Iijima S, Ichihashi T, Nature 363(1993),603
32. Bethune DS, Kiang CH, De Vires, et al. Nature 363(1993),605
33. Thess A, Lee R, Nikolaev P, et al, Science 273(1996),483
34. Guo T, Nikolaev P, Thess A, et al. Chem. Phys. Lett. 243(1995),49
35. Nikolaev P, Bronikowski MJ, Bradley RK, et al. Chem .Phys. Lett. 313(1999),91
36. Benito AM, Maniette YM, Munoz E, Martinez MT, Carbon 36(1998),681
37. Araki H, Katayama T, Katsumi Y, J Phys D:Appl. Phys. 35(2002),1076
38. Terrones M, Grobert N, Oliares J, Zhang JP, et al, Nature 388(1997),52
39. Wei YY, Gyula Eres, Merkulov VI, Lowndes DH, Appl. Phys. Lett 78(2001),1394
40. Nerushev O.A, Dittmar S, Morjan R.E, Rohmund F, Campbell E.B, J. Appl. Phy 93(2003),4185
41. Jung M, Eun K.Y, Lee J.K, Baik Y.J, Lee K.R, Park J.W, Diamond & Related Materials 10(2001),1235
42. Dai H, Rinzler G, Nikolaev P, Thess A, Colbert D.T, Smalley R.E, Chem. Phys. Lett. 260(1996),471
43. Fan Y.Y, Li F, Cheng HM, et al. J. Mater. Res 113(1998),2342
44. Ren ZF, Huang ZP, Xu JW, Wang JH, Bush. P, Siegal MP, Provencio PN, Science 282(1998),1105
45. Valentini L,Kenny JM, Lozzi L, Santucci S, J. Appl. Phys. 92(2002),6188
46. Bower C, Zhou O, Zhu W, Werder D.J, Jin S, Appl. Phys. Lett. 77(2000),2767
47. Wong W.K, Li C.P, Au F.C.K, Fung M.K, Sun X.H, Lee C.S, Lee S.T, Zhu W, J. Phys. Chem.B 107(2003),1514
48. Bower C, Zhu W, Jin S, Zhou O, Appl. Phys. Lett. 77(2000),830
49. Thomas W Ebbessen et al. Carbon nanotubes : preparation and properties CRC Press ,1997
50. Endo M and Kroto HW, J. Phys Chem 96(1992),6941
51. Saito Y,Yoshikawa T, Inagaki M, Tomita M, Hayashi T, Chem. Phys. Lett. 304(1999),277
52. Baker R.T.K, Harries P.S, Chemistry and Physics of Carbon ,Marcel Dekker, New York(1978),83
53. Baker R.T.K, Braber M.A, Harries P.S, Feates F.S, Waite R.J, J. catal. 26(1972),51
54. Baker R.T.K, Chludzinski J.J , J. catal. 64(1980),464
55. Gorbunov A, Jost O, Pompe W, Graff A, Carbon 40(2002),113
56. Oberlin A, Endo M, Koyama T, Carbon 14(1976),133
57. Oberlin A, Endo M, Koyama T, J. Crys. Growth 32(1976),335
58. Baird T, Fryer J.R, Giant B, Carbon 12(1974),591
59. Tibbetts GG, J. Crys. Growth, 66(1984),632
60. 汪建民主編,材料分析,中國材料科學學會,新竹市,民國87
61. Hiura H, Ebbesen TW, Tanigaki K, et al, Chem. Phys. Lett 202(1993),509
62. Eklund P.C, Brabec C, Buongiorno M, Maiti A, Roland C, Yakobson B.I, Appl. Phys. A-Mater 39(1998),67
63. Donald A. Neamen, Semiconductor Physics and Devices-Basic Principles Third Edition, McGraw-Hill 2003,
64. Groning O, Kuttel O.M, Emmenegger Ch, Groning P, Schlapbach L, J. Vac. Sci. Technol B 18(2000),665
65. Bart Van Zeghbroeck, Principles of Semiconductor Devices,
66. Manashi Nath , B.C. Satishkumar , A.Govindaraj , C.P. Vinod , C.N.R. Rao , Chem. Phys. Lett. 322(2000), 333
67. V.D Blank, E.V. Polyakov, D.V. Batov, B.A. Kulnitsiy, U. Bangert, A. Gutierrez-Sosa, A.J. Harvey, A. Seepujak, Diamond and Related Materials 12(2003), 864
68. M.c. dos Santos and F. Alvarez, Phys. Rev. B 58(1998), 13918
69. Jiangtao Hu, Peidong Yang, and Charles M. Lieber, Phys. Rev. B 57
(1998), R3185
70. M.Terrones. P.M. Ajayan, F. Banhart, X. Blasé, D.L. Carroll, J.C. Charlier, R. Czerw, B. Foley, N. Grobert, R. Kamalakaran, P. Kohler-Redlich, M. Ruhle, H. Terrones, Appl. Phys. A 74, 355
71. M. Ohring, The Materials Science of Thin Films (Acadamic, San Diego, 1992), p.422
72. In Ref. 66, p419
73. K.M. Crosby and R.M. Bradley, Phys. Rev. E 59(1999), R2542
74. J. V. Laukonis and R.V. Coleman J. Appl. Phys. 32(1961), 242
75. J.M. Thomas and W.J. Thomas, Introduction to the Principles of Heterogeneous Catalysis (Acadamic, London, 1974), p.138
76. David R. Gaskell, Introduction to the Thermodynamics of Materials (Taylor and Francis, 1995), APPENDIX A
77. In Ref. 72, p.370
78. J. H. Choi, T. Y. Lee, S. H. Choi et al, Thin solid films 435(2003), 318
79.Ren Z.F., Huang Z.P., Xu J.W, Wang J.H., Bush P, Siegel M.P., Provencio P.N, Science 282(1998),1105
80. Tsai S.H., Chao C.W., Lee C.L., Shin H.C, Appl. Phys. Lett. 74(1999), 3462
81.Zhang Q, Yoon S.F., Ahn J, Gan B, Rusli and Yu M.B., J. Phys. Chem. Solids, 61(2000),1179
82.Bower C, Zhu W, Jin S, Zhou O, Appl. Phys. Lett., 77(2000),830
83.Merkulov V.I., Guillorn M.A., Lowndes D.H., Simpson M.L., Voelkl E., Appl. Phys. Lett. 79(2001), 1178
84.Merkulov V.I., Melechko A.V., Guillorn M.A., Lowndes D.H., Simpson M.L., Appl. Phys. Lett. 79(2001), 1178
85. Lee J.Y and Lee B.S., Thin solid films 418(2002), 85
86. Wang X., Hu Z., Chen X., Chen Y., Scripta. Mater 44(2001), 1567
87. Yang D.J., Zhang Q, S., Yoon S.F., Ahn. J., S. Wang S.G., Zhou Q., Wang Q., Li J.Q., Surface and Coating Technology 167(2003), 288
88. Wang Y. Y., Tang G.Y., Koeck F.A.M., Brown .B,. Garguilo J. M and R. J. Nemanich, Diam. Relat. Mater 13(2004), 1287
91. Ferrari A.C., Robertson J., Phys. Rev. B 61(2000),14095
92. Morell G., Perez W., Ching-Prado E., Katiyar R.S., Phys. Rev. B 53(1996), 6491
93. Hyer R.C., Green M., Sharma S.C., Phys. Rev. B 49(1994),14573
94. Ager J.W., Droy M.D., Phys. Rev. B 48(1993),2601
95.Suenaga K., Johanson M.P., Hellgren N., Broitman E., Wallenberg L.R., Colliex C., Sundgren J.E., Hultman L., Chem. Phys. Lett. 300(1999), 695
96.Sjostrom H., Goze C., Bernier P., Rudio A., Phys. Rev. Lett. 75(1995), 1136
97. Ma X.C, Wang E.G, Zhou W, Jefferson D.A., Appl. Phys. Lett. 75(1999), 3105
98. Ma X.C, Wang E.G, Tilley R.D, Jefferson D.A., Zhou W, Appl. Phys. Lett. 77(2000), 4136
99. Zhang G.Y., Ma X.C, Zhong D.Y., Wang E.G., J. Appl. Phys. 91(2002), 9324
100. Yakobson B.I., Smalley R.E., American Scientist, 85(1997), 324
101.Lee C.J., Kim D.W., Lee T.J., Choi Y.C., Park Y.S., Lee Y.H., Choi W.B., Lee N.S., Park G.-S., J.M. Kim, Chem. Phys. Lett. 312(1999), 461
102. Choi K.S., Cho Y.S., Hong S.Y., Park J.B., Kim D.J., J. Euro. Ceram. Soc. 21(2001) 2095
103. Choi G.S., Cho Y.S., Hong S.Y., Park J.B., Son K.H., Kim D.J., J. Appl. Phys. 91(2002) 3847
104. G. Ertl, S.B. Lee and M. Weiss, Surf. Sci., 114(1982) 515
106. J.J.Mortensen, M.V. Ganduglia-Pirovano, L.B. Hansen, B. Hammer, P. Stoltze, J.K. Norskov, Surf. Sci 422(1999) 8
107. F.Bozso, G. Etrl, and M. Weiss, J. catal., 50(1977) 519
108. Suklyun Hong, Current Applied Physics 3(2003) 457
109. Kato T., Haruta K., Kusakabe K., Morooka S., Carbon 30(1992) 989
110. Lee Y.J., Lee B.S., Thin solid Films 418(2002) 85
111.Han J.H., Choi S.H., Lee T.Y., Yoo J.B., Thin solid films 409(2002) 126
112. W. Muller-Sebert, E. Worner, F. Fuchs, C. Wild, and P. Koidl, Appl. Phys. Lett. 68(6), 5 February 1996
113. Z.Y. Juang, I.P. Chien, J.F. Lai, T.S. Lai, C.H. Tsai, Diamond and Related Materials 13(2004) 1203
114. 陳克昌、莊國章,”鈦金屬及其合金之離子氮化”,表面工業雜誌,第53期,第28~40頁。
115.黃振賢,金屬熱處理,文京圖書公司,1985,第187~202頁。
116.金重勳,熱處理,復文書局,1986,第184~191頁