簡易檢索 / 詳目顯示

研究生: 林思賢
Lin, Szu-Hsien
論文名稱: 氨氣對於奈米碳管製程之影響
Effect of ammonia in the synthesis of carbon nano-tube
指導教授: 丁志明
Ting, Jyh-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 230
中文關鍵詞: 奈米碳管氨氣
外文關鍵詞: CNT, ammonia
相關次數: 點閱:73下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究以熱式催化劑化學氣相沉積法成長具定向性的奈米碳管,採純鐵薄膜作為催化劑分別比較以氫氣及氨氣作為熱處理氣體時對成長奈米碳管之影響。除比較兩者作為熱處理氣體對成長奈米碳管之影響外,藉改變氨氣濃度探討其對於奈米碳管成長行為及型態的影響。
      實驗結果顯示以氫氣作為熱處理氣體時,反應氣體中氨氣濃度低時可獲得具高密度的碳管;隨著氨氣濃度增加則碳管漸漸失去定向性。以氨氣作為熱處理氣體時,反應氣體中的氨氣濃度對碳管密度的影響不明顯;隨著氨氣濃度增加碳管亦漸失去定向性。氨氣濃度增加,碳管在拉曼光譜上的D band 強度值和G band強度值比(ID/IG ratio)將隨之增加,顯示碳管結構隨氨氣濃度增加至一定濃度而出現較多缺陷。
      從EELS分析結果可知氮原子進入碳管結構後,隨數量的增加將產生雙鍵的碳-氮鍵結而非氮原子數量少時的碳-氮單鍵,而雙鍵結構會使得原本具準直性的碳管開始產生皺折及彎曲。場發射電流量測結果顯示碳管之定向性對其有相當大的影響,較整齊排列的碳管將有較佳場發射性質,但密度過高則有相反效果。在溫度方面,低於600℃將無法獲得成長良好的碳管,品質方面亦無法達到可應用之要求。

     NH3 as a reaction gas had been profoundly used in various kind of process to synthesize carbon nanotube including plasma enhanced chemical vapor deposition (PE-CVD), microwave plasma enhanced chemical vapor deposition (MPE-CVD) and thermal chemical vapor deposition (thermal CVD) et al. Generally, the major effect of ammonia is to enhance the alignment of carbon naotubes but the mechanism of how NH3 promote such an important characteristic of carbon nanotube is still uncertain.
     In this experiment, ammonia is used as heat treatment gas and is compared with hydrogen gas. Also, under the same total flow rate but different carbon source concentration, it’s introduced in reaction gas with different concentration to mix with carbon source, acetylene. Fe thin film which acts as catalyst will crack into nano-scale particles after the heat treatment because of internal and thermal strength. Then, through the chemical vapor deposition in horizontal tube furnace with mixing reaction gas at 1atmosphere, carbon nanotubes with good alignment were thus obtained.
     SEM & TEM were used to analyze the microstructure of carbon nanotube and Raman spectroscopy was also used to analyze the quality of carbon nanotube. By adopting Field emission measurement of our laboratory, the field emission properties and the cycle-times test results were also acquired. Beside, EELS information of CNTs was collected during TEM observation.
     Results show that carbon nanotubes growing with NH3 heat treatment has better alignment than those growing with H2 heat treatment and the quality of carbon nanotubes become worse when the NH3 concentration in mixing reaction gas getting higher. In the mean while, the field emission properties of carbon nanotubes don’t have close relation with the quality of CNTs obviously and it seems the field emission properties were more likely affected by the alignment of carbon nanotubes. With increasing concentration of ammonia, more and more bamboo-structure appears in carbon nanotubes. In EELS results, we observed the K edge signal of N which come from the interaction between electron beam and π* orbital of the pyridine-like orbital. The K edge signal of N show the existence of N atoms in CNT’s structure and we suspect this is the reason why the CNT’s loss it’s alignment when the concentration of NH3 exceed 50%.
     By the theoretical analysis of Thermal Dynamics calculated by some research groups and our experimental results, this experiment gives the basic explanation of how ammonia affects the growth behavior of carbon nanotubes with different properties.

    目錄 摘要 I Abstract II 致謝 IV 目錄 V 表目錄 X 圖目錄 XI 圖目錄 XI 第一章 緒論 1 1.1前言 1 1.2 研究動機 2 第二章 文獻回顧 3 2.1 奈米碳管之結構與性質 3 2.1.1 單壁奈米碳管之結構與電性 4 2.1.2 多壁奈米碳管之結構與電性 7 2.1.3 機械性質 9 2.1.3.1 軸向模數 9 2.1.3.2 徑向模數 14 2.1.4 儲氫性質 14 2.2.1 電弧法 16 2.2.2 雷射蒸鍍法 18 2.2.3 化學氣相沉積法 20 2.2.3.1 CO disproportionation法 21 2.2.3.2 催化熱分解法 23 2.2.3.3 電漿輔助化學氣相沉積法(PE-CVD) 24 2.2.3.4 微波電漿輔助化學氣相沉積法(MP-CVD) 26 2.3 奈米碳管之成長機制 29 2.4拉曼光譜學簡介 34 2.4.1 奈米碳質材料的拉曼光譜研究 36 2.5 場發射性質 39 2.5.1 內部電子狀態與表面能障 39 2.5.2 Fowler-Nordheim 公式 43 2.6 奈米碳管之XPS及EELS分析 50 第三章 研究方法與實驗步驟 54 3.1 研究方法 54 3.2 實驗流程 54 3.3 實驗系統 54 3.4 實驗材料選擇 57 3.4.1 反應氣體 57 3.4.2 基板及催化劑 57 3.5 成長奈米碳管步驟 58 3.5.1 基材清潔 58 3.5.2 金屬催化劑濺鍍 58 3.5.3 實驗步驟 58 3.6 成長奈米碳管之實驗設計 59 3.7 分析與鑑定 60 3.7.1 表面型態觀察 60 3.7.2 微結構分析 60 3.7.3 微區拉曼光譜分析 61 3.7.4 場發射性質量測 61 第四章 結果與討論 63 4.1 催化劑表面型態 63 4.2 氫氣作為熱處理氣體 69 4.2.1 氨氣濃度對成長奈米碳管的影響 69 4.2.1.1.碳源濃度20% 70 4.2.1.2.碳源濃度15% 75 4.2.1.3.碳源濃度10% 79 4.2.1.4.碳源濃度5% 80 4.2.2 拉曼光譜分析 87 4.2.3 微結構分析 98 4.3 氨氣作為熱處理氣體 111 4.3.1 氨氣濃度對成長奈米碳管的影響 111 4.3.1.1.碳源濃度20% 111 4.3.1.3.碳源濃度10% 120 4.3.1.4.碳源濃度5% 120 4.3.2 拉曼光譜分析 127 4.3.3 微結構分析 136 4.4 氣體濃度對成長奈米碳管之影響 142 4.4.1 氨氣濃度之影響 142 4.4.1.1 氨氣對催化劑之影響 142 4.4.1.2 碳吸附於催化劑上之行為 146 4.4.1.3 碳管成長之差異 150 4.4.2 碳源氣體濃度之影響 155 4.4.2.1 反應氣體中氫氣之討論 155 4.4.2.2 碳源濃度影響成長之機制 157 4.4.3 熱處理氣體造成的影響 161 4.5 EELS分析 167 4.6 溫度之影響 177 4.6.1 氫氣作為熱處理氣體 177 4.6.2 氨氣作為熱處理氣體 180 4.6.3 拉曼光譜分析 180 4.7 場發射性質 197 4.7.1 以氫氣熱處理氣體所得碳管之場發射性質 197 4.7.2 以氨氣熱處理氣體所得碳管之場發射性質 210 第五章 結論 222 參考文獻 226

    1. Kroto HW, Heath JR, Brien SCO, et al. Nature 318(1985),162
    2. Iijima S. Nature 354(1991),56
    3. Iijima S, Ichihashi T. Nature 363(1993),603
    4. Bethune DS, Kiang CH, Devries MS. Nature 363(1993),605
    5. Ma RZ, Wu J, Wei BQ, et al. J. Mater. Sci 33(1998),5243
    6. Baughman RH, Cui C, Zakhidov AA, et al. Science 284(1999),1340
    7. Batchtold A, Hadley P, Nakanishi T, et al. Science 294(2001),76
    8. Collins PG, Zettl A, Bando H, et al. Science 278(1997),100
    9. Chen Y, Shaw DT, Bai XD, et al. Appl. Phys. Lett 78(2001),2128
    10. Kong J, Franklin NR, Zhou C, et al. Science 287(287),622
    11. Kwo JL, Yokoyama M, Wang WC, et al. Diamond & Related Materials 9(2000),1270
    12. Dai HJ, Hafner JH, Rinzler AG, et al. Nature 384(1996),147
    13. Kim P, Lieber CM, et al. Science 1999(286),2148
    14. Postma HWCH, Teepen, Yao Z, et al. Science 293(2001),76
    15. Hummer G, Rasaigh JC, JP Noworyta. Nature 414(2001),188
    16. M.S Dresselhaus , G. Dresselhaus and R.Saito, Physics of carbon nanotubes Imperial College Press ,1998, Carbon 33(1995),883
    17. Saito R, Fujita M, Dresselhaus G, Dresselhaus MS. Appl. Phys. Lett 60(1992),2204
    18. Saito R, Dresselhaus G, Dresselhaus MS. J. Appl. Phys. 73(1993),494
    19. Charlier JC, Michenaud JP. Phys. Rev. Lett 70(1993),1858
    20. Wong EW, Sheehan PE, Lieber CM. Science 277(1997),1971
    21. Salvetat JP, Briggs GAD, Bonard JM, et al. Phys Rev Lett 82(1999),944
    22. Poncharal P, Wang ZL, Ugarte D, et al. Science 283(1999)1513
    23. Pan ZW, Xie SS, Lu L, et al. Appl. Phys. Lett 74(1999),3152
    24. Tang J, Qin LC, Sasaki T, et al. Phys. Rev. Lett 85(2000),887
    25. Dillon AC, Jones KM, Bekkedahl TA, et al. Nature 386(1997),377
    26. Ye Y, Ahn CC, Witham C. Appl. Phys. Lett 74(1999),2307
    27. Chen Y,Shaw DT, Bai XD, et al. Appl. Phys. Lett 78(2001),2128
    28. Ebbeseen TW, Ajayan PM. Nature 358(1992),220
    29. Ebbeseen TW, Hiura H, Fujita J, Ochiai Y, Matsui S, Tanigaki K, Chem. Phys. Lett 209(1993),83
    30. Seraphin S, Zhou D, Jiao J, Withers C, Loufty R, Carbon 31(1993),685
    31. Iijima S, Ichihashi T, Nature 363(1993),603
    32. Bethune DS, Kiang CH, De Vires, et al. Nature 363(1993),605
    33. Thess A, Lee R, Nikolaev P, et al, Science 273(1996),483
    34. Guo T, Nikolaev P, Thess A, et al. Chem. Phys. Lett. 243(1995),49
    35. Nikolaev P, Bronikowski MJ, Bradley RK, et al. Chem .Phys. Lett. 313(1999),91
    36. Benito AM, Maniette YM, Munoz E, Martinez MT, Carbon 36(1998),681
    37. Araki H, Katayama T, Katsumi Y, J Phys D:Appl. Phys. 35(2002),1076
    38. Terrones M, Grobert N, Oliares J, Zhang JP, et al, Nature 388(1997),52
    39. Wei YY, Gyula Eres, Merkulov VI, Lowndes DH, Appl. Phys. Lett 78(2001),1394
    40. Nerushev O.A, Dittmar S, Morjan R.E, Rohmund F, Campbell E.B, J. Appl. Phy 93(2003),4185
    41. Jung M, Eun K.Y, Lee J.K, Baik Y.J, Lee K.R, Park J.W, Diamond & Related Materials 10(2001),1235
    42. Dai H, Rinzler G, Nikolaev P, Thess A, Colbert D.T, Smalley R.E, Chem. Phys. Lett. 260(1996),471
    43. Fan Y.Y, Li F, Cheng HM, et al. J. Mater. Res 113(1998),2342
    44. Ren ZF, Huang ZP, Xu JW, Wang JH, Bush. P, Siegal MP, Provencio PN, Science 282(1998),1105
    45. Valentini L,Kenny JM, Lozzi L, Santucci S, J. Appl. Phys. 92(2002),6188
    46. Bower C, Zhou O, Zhu W, Werder D.J, Jin S, Appl. Phys. Lett. 77(2000),2767
    47. Wong W.K, Li C.P, Au F.C.K, Fung M.K, Sun X.H, Lee C.S, Lee S.T, Zhu W, J. Phys. Chem.B 107(2003),1514
    48. Bower C, Zhu W, Jin S, Zhou O, Appl. Phys. Lett. 77(2000),830
    49. Thomas W Ebbessen et al. Carbon nanotubes : preparation and properties CRC Press ,1997
    50. Endo M and Kroto HW, J. Phys Chem 96(1992),6941
    51. Saito Y,Yoshikawa T, Inagaki M, Tomita M, Hayashi T, Chem. Phys. Lett. 304(1999),277
    52. Baker R.T.K, Harries P.S, Chemistry and Physics of Carbon ,Marcel Dekker, New York(1978),83
    53. Baker R.T.K, Braber M.A, Harries P.S, Feates F.S, Waite R.J, J. catal. 26(1972),51
    54. Baker R.T.K, Chludzinski J.J , J. catal. 64(1980),464
    55. Gorbunov A, Jost O, Pompe W, Graff A, Carbon 40(2002),113
    56. Oberlin A, Endo M, Koyama T, Carbon 14(1976),133
    57. Oberlin A, Endo M, Koyama T, J. Crys. Growth 32(1976),335
    58. Baird T, Fryer J.R, Giant B, Carbon 12(1974),591
    59. Tibbetts GG, J. Crys. Growth, 66(1984),632
    60. 汪建民主編,材料分析,中國材料科學學會,新竹市,民國87
    61. Hiura H, Ebbesen TW, Tanigaki K, et al, Chem. Phys. Lett 202(1993),509
    62. Eklund P.C, Brabec C, Buongiorno M, Maiti A, Roland C, Yakobson B.I, Appl. Phys. A-Mater 39(1998),67
    63. Donald A. Neamen, Semiconductor Physics and Devices-Basic Principles Third Edition, McGraw-Hill 2003,
    64. Groning O, Kuttel O.M, Emmenegger Ch, Groning P, Schlapbach L, J. Vac. Sci. Technol B 18(2000),665
    65. Bart Van Zeghbroeck, Principles of Semiconductor Devices,
    66. Manashi Nath , B.C. Satishkumar , A.Govindaraj , C.P. Vinod , C.N.R. Rao , Chem. Phys. Lett. 322(2000), 333
    67. V.D Blank, E.V. Polyakov, D.V. Batov, B.A. Kulnitsiy, U. Bangert, A. Gutierrez-Sosa, A.J. Harvey, A. Seepujak, Diamond and Related Materials 12(2003), 864
    68. M.c. dos Santos and F. Alvarez, Phys. Rev. B 58(1998), 13918
    69. Jiangtao Hu, Peidong Yang, and Charles M. Lieber, Phys. Rev. B 57
    (1998), R3185
    70. M.Terrones. P.M. Ajayan, F. Banhart, X. Blasé, D.L. Carroll, J.C. Charlier, R. Czerw, B. Foley, N. Grobert, R. Kamalakaran, P. Kohler-Redlich, M. Ruhle, H. Terrones, Appl. Phys. A 74, 355
    71. M. Ohring, The Materials Science of Thin Films (Acadamic, San Diego, 1992), p.422
    72. In Ref. 66, p419
    73. K.M. Crosby and R.M. Bradley, Phys. Rev. E 59(1999), R2542
    74. J. V. Laukonis and R.V. Coleman J. Appl. Phys. 32(1961), 242
    75. J.M. Thomas and W.J. Thomas, Introduction to the Principles of Heterogeneous Catalysis (Acadamic, London, 1974), p.138
    76. David R. Gaskell, Introduction to the Thermodynamics of Materials (Taylor and Francis, 1995), APPENDIX A
    77. In Ref. 72, p.370
    78. J. H. Choi, T. Y. Lee, S. H. Choi et al, Thin solid films 435(2003), 318
    79.Ren Z.F., Huang Z.P., Xu J.W, Wang J.H., Bush P, Siegel M.P., Provencio P.N, Science 282(1998),1105
    80. Tsai S.H., Chao C.W., Lee C.L., Shin H.C, Appl. Phys. Lett. 74(1999), 3462
    81.Zhang Q, Yoon S.F., Ahn J, Gan B, Rusli and Yu M.B., J. Phys. Chem. Solids, 61(2000),1179
    82.Bower C, Zhu W, Jin S, Zhou O, Appl. Phys. Lett., 77(2000),830
    83.Merkulov V.I., Guillorn M.A., Lowndes D.H., Simpson M.L., Voelkl E., Appl. Phys. Lett. 79(2001), 1178
    84.Merkulov V.I., Melechko A.V., Guillorn M.A., Lowndes D.H., Simpson M.L., Appl. Phys. Lett. 79(2001), 1178
    85. Lee J.Y and Lee B.S., Thin solid films 418(2002), 85
    86. Wang X., Hu Z., Chen X., Chen Y., Scripta. Mater 44(2001), 1567
    87. Yang D.J., Zhang Q, S., Yoon S.F., Ahn. J., S. Wang S.G., Zhou Q., Wang Q., Li J.Q., Surface and Coating Technology 167(2003), 288
    88. Wang Y. Y., Tang G.Y., Koeck F.A.M., Brown .B,. Garguilo J. M and R. J. Nemanich, Diam. Relat. Mater 13(2004), 1287
    91. Ferrari A.C., Robertson J., Phys. Rev. B 61(2000),14095
    92. Morell G., Perez W., Ching-Prado E., Katiyar R.S., Phys. Rev. B 53(1996), 6491
    93. Hyer R.C., Green M., Sharma S.C., Phys. Rev. B 49(1994),14573
    94. Ager J.W., Droy M.D., Phys. Rev. B 48(1993),2601
    95.Suenaga K., Johanson M.P., Hellgren N., Broitman E., Wallenberg L.R., Colliex C., Sundgren J.E., Hultman L., Chem. Phys. Lett. 300(1999), 695
    96.Sjostrom H., Goze C., Bernier P., Rudio A., Phys. Rev. Lett. 75(1995), 1136
    97. Ma X.C, Wang E.G, Zhou W, Jefferson D.A., Appl. Phys. Lett. 75(1999), 3105
    98. Ma X.C, Wang E.G, Tilley R.D, Jefferson D.A., Zhou W, Appl. Phys. Lett. 77(2000), 4136
    99. Zhang G.Y., Ma X.C, Zhong D.Y., Wang E.G., J. Appl. Phys. 91(2002), 9324
    100. Yakobson B.I., Smalley R.E., American Scientist, 85(1997), 324
    101.Lee C.J., Kim D.W., Lee T.J., Choi Y.C., Park Y.S., Lee Y.H., Choi W.B., Lee N.S., Park G.-S., J.M. Kim, Chem. Phys. Lett. 312(1999), 461
    102. Choi K.S., Cho Y.S., Hong S.Y., Park J.B., Kim D.J., J. Euro. Ceram. Soc. 21(2001) 2095
    103. Choi G.S., Cho Y.S., Hong S.Y., Park J.B., Son K.H., Kim D.J., J. Appl. Phys. 91(2002) 3847
    104. G. Ertl, S.B. Lee and M. Weiss, Surf. Sci., 114(1982) 515
    106. J.J.Mortensen, M.V. Ganduglia-Pirovano, L.B. Hansen, B. Hammer, P. Stoltze, J.K. Norskov, Surf. Sci 422(1999) 8
    107. F.Bozso, G. Etrl, and M. Weiss, J. catal., 50(1977) 519
    108. Suklyun Hong, Current Applied Physics 3(2003) 457
    109. Kato T., Haruta K., Kusakabe K., Morooka S., Carbon 30(1992) 989
    110. Lee Y.J., Lee B.S., Thin solid Films 418(2002) 85
    111.Han J.H., Choi S.H., Lee T.Y., Yoo J.B., Thin solid films 409(2002) 126
    112. W. Muller-Sebert, E. Worner, F. Fuchs, C. Wild, and P. Koidl, Appl. Phys. Lett. 68(6), 5 February 1996
    113. Z.Y. Juang, I.P. Chien, J.F. Lai, T.S. Lai, C.H. Tsai, Diamond and Related Materials 13(2004) 1203
    114. 陳克昌、莊國章,”鈦金屬及其合金之離子氮化”,表面工業雜誌,第53期,第28~40頁。
    115.黃振賢,金屬熱處理,文京圖書公司,1985,第187~202頁。
    116.金重勳,熱處理,復文書局,1986,第184~191頁

    下載圖示 校內:立即公開
    校外:2005-05-30公開
    QR CODE