| 研究生: |
鄭凱文 Cheng, Kai-Wen |
|---|---|
| 論文名稱: |
非平衡磁控濺鍍含鎳氮化鉻鍍膜之磨潤性能 The tribological performance of Cr-Ni-N coatings deposited by unbalanced magnetron sputtering |
| 指導教授: |
蘇演良
Su, Yan-Liang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 氮化鉻 、非平衡磁控濺鍍 、磨潤性能 |
| 外文關鍵詞: | unbalanced magnetron sputtering, CrN, tribological performance |
| 相關次數: | 點閱:101 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用封閉式非平衡磁控濺鍍法,以不同的鎳靶電流將Cr-Ni-N鍍膜被覆於矽晶片、高速鋼、微鑽針及捨棄式刀片上,探討不同鎳含量對於氮化鉻鍍膜性質之影響。首先以GDS分析鍍膜的成分,以XRD及SEM分析微結構,以維氏微硬度機量測鍍膜之微硬度,以刮痕試驗機及洛氏壓痕器試驗其附著性,以SRV磨耗試驗機及Pin-on-disk磨耗試驗機研究鍍膜之磨潤性能,再進一步實際利用印刷電路板鑽削及中碳鋼車削來探討其耐磨耗性。
實驗結果顯示:Cr-Ni-N鍍膜隨著鎳靶電流由0.1A增大至0.9A,鎳含量由0.2 at.% 增加至6.2 at.%。隨著鎳含量越多,結晶晶粒將變小且柱狀晶逐漸變得越細微;微硬度值先微幅下降而後上升,至2.5 at.%時有最高之硬度Hk25g2009,繼續增加鎳含量將使硬度大幅下降。Cr-Ni-N系列鍍膜皆擁有優良之附著性及接觸角表現。在SRV磨耗試驗與Pin-on-disk磨耗試驗中,Cr-Ni-N鍍膜中以鎳含量2.5 at.%鍍膜耐磨性最好。耐熱性方面,於熱處理後發現鍍膜表面形成一層高硬度之Cr2O3氧化層,加上鍍膜結構由較軟之CrN(200)相轉變為較硬之Cr2N(111)相,故硬度大幅提升。於PCB鑽削實驗中,CrN鍍膜約提升微鑽針壽命3倍,Cr-Ni-N鍍膜鎳含量為2.5 at.%時表現最好,約提升微鑽針壽命4倍。
Cr-Ni-N coatings were deposited on silicon (100) substrates and AISI M2 steel disks from one nickel and three chromium targets using the Closed Field Unbalanced Magnetron (CFUBM) sputtering system in Ar+N2 plasma. These Cr-Ni-N coatings were prepared at various current of Ni target. A GDS was used to measure the composition inside the coatings. The microstructure of the coatings was analyzed using XRD and FE-SEM. The hardness have been characterized by the Vickers micro-hardness test machine. Adhesion of the coatings to the substrate was assessed using a Rockwell C hardness tester and a scratch test machine. The tribological performance of the coatings were tested by a SRV wear test machine against AISI 1045 cylinders and Al2O3 balls. Finally, the cutting performance of the coatings were analyzed using the dry turning and PCB through hole drilling applications.
The experiment results are shown as following: the concentration of Ni appeared to increase from 0.2 to 6.2 at.% when increasing the current of Ni target from 0.1 to 0.9 A. The grain size was become smaller and the columnar structure changed into a unobvious one with increasing Ni dopant concentration. Moreover, Cr-Ni-N coating has maximum hardness of Hk25g 2009 while the nickel content is 2.5 at.%. Among the SRV test and Pin-on-disk test, the wear-resistance of the Cr-Ni-N coatings was the best when nickel contents 2.5 at.%. In heat-resistance, the hardness of the Cr-Ni-N coatings at temperature of 400℃ increase about Hk25g 261 - Hk25g 435. It could be attributed to the forming of Cr2O3 at the surface. In the actual applying of the Cr-Ni-N coatings on turning and drilling, the coatings with nickel contents of 2.5 at.% process the optimal wear resistance.
1.D.J. Cheng, W.P. Sun and M.H. Hon, Thin Solid Films, 146(1) (1987) 45.
2.B.E. Jacobson, C.V. Deshandey, H.J. Doerr, A.A. Karim and R.F. Bunshah, Thin Solid Films, 118(3) (1984) 285.
3.V. Murama, Heat Treament of Metals. 12(2) (1985) 49.
4.S. Ramalingam, Wear, 118 (1984) 335.
5.F.H. Lu, H.Y. Chen, Thin Solid Films, 398-399 (2001) 368-373.
6.李國維,“碳化鎢模具經物理蒸鍍氮化鉻鍍膜對其磨耗特性影響之研究”,國立高雄第一科技大學,中華民國90年。
7.M.A. Djouadi, C. Nouveau, P. Beer, M. Lambertin, Surface and Coatings Technology, 133-134 (2000) 478-483.
8.陳弘穎、呂福興,“氮化鉻鍍膜於高溫真空下的相變化”,國立中興大學材料工程學系。
9.H. Gleiter, Mater. Sci. Eng. 52 (1982) 91.
10.P. Hones, R. Sanjines, F. Levy, Thin Solid Films, 332 (1998) 240-246.
11.C.M. Mo, Y.H. Li, Y.S. Liu, Y. Zhang, and L.D. Zhang, J. Appl. Phys. 83 (1998) 4398.
12.C. Fan, C. Li, and A. Inoue, Phys. Rev. B, 61 (2001) 3761.
13.C. Fan and A. Inoue, Appl. Phys. Lett. 77 (2000) 46.
14.L.Q. Xing, C. Bertrand, J.P. Dallas, and M. Cornet, Mat. Sci. Eng. A. 241 (1998) 216.
15.W.D. Sproul, Science, 273 (1996) 889.
16.F. Regent, J. Musil, Surface and Coatings Technology, 142-144 (2001) 280-285.
17.P. Karvankova, H.-D. Mannling, C. Eggs, S. Veprek, Surface and Coatings Technology, 147-148 (2001) 146-151.
18.F. Vaz, L. Rebouta, M. Andritschky, M.F. da Silva, J.C. Soares, Journal of Materials Processing Technology, 92-93 (1999) 169-176.
19.W. Clegg, Interceram, 40 (1991) 6.
20.K. Niihara, J. Ceram. Soc. Jpn. 99[10] (1991) 974-82.
21.M. Nawa, T. Sekino, Knniihara, J. Jpn Soc. of Powd. and Powd. Metal. , 39 (1992) 1104-1108.
22.L.C. Stearns, J. Zhao, and M.P. Harmer, J. Euro. Ceram. Soc. 10 (1992) 473-477
23.張立德,“奈米材料與奈米結構”,滄海書局,中華民國91年。
24.黃啟祥、林江財,陶瓷技術手冊(下),中華民國83年。
25.S. Veprek and S. Reiprich, Thin Solid Films, 268 (1996) 64.
26.J. Musil, P. Zeman, H. Hruby, P.H. Mayrhofer, Surface and Coatings Technology, 120-121 (1999) 179-183.
27.F. Vaz, L. Rebouta, Ph. Goudeau, T. Girardeau, J. Pacaud, J.P. Riviere, A. Traverse, Surface and Coatings Technology, 146-147 (2001) 274-279.
28.F. Vaz, L. Rebouta, P. Goudeau, J. Pacaud, H. Garem, J.P. Riviere, A. Cavaleiro, E. Alves, Surface & Coatings Technology, 133-134 (2000) 307-313.
29.J. Musil, J. Vl?ek, Surface & Coatings Technology, 142-144 (2001) 557-566
30.C. Mitterer, P.H. Mayrhofer, M. Beschliesser, P. Losbichler, P. Warbichler, F. Hofer, P.N. Gibson, W. Gissler, H. Hruby, J. Musil, J. Vl?ek, Surface and Coatings Technology, 120-121(1999)405-411
31.J. Musil, F. Regent, J. Vac. Sci. Technol. A 16(6)
32.C. Nouveau, M.A. Djouadi, Thin Solid Films, 398-399 (2001) 490-495.
33.C. Rebholz, H. Ziegele, A. Leyland, A. Matthews, Surface and Coatings Technology, 115 (1999) 222-229.
34.楊志豪,“以非平衡磁控法濺鍍CrN鍍膜性質之研究”,國立成功大學材料科學及工程研究所,中華民國87年。
35.J.P. Terrat et al., Surface and Coatings Technology, 45 (1991) 59-65.
36.D. Wang and T. Oki , Thin Solid Films, 185 (1990) 219-230.
37.賴冠仁,“冷陰極電弧電漿沉積之製程技術原理”,科儀新知,第十六卷五期,中華民國85年。
38.W.D. Sproul and M.H. Richman, J. Vac. Sci. Technol. 12, (1984) 842.
39.切削刀具辭典,機械技術雜誌社,中華民國87年。
40.T. Arai , H. Fujita , M. Watanabe, “Evaluation of adhesion strength of thin hard coatings”, Thin Solid Films, 154 (1987) 391.
41.吳明勳,“添加銀或鎢對氮化鉻薄膜磨潤性能之影響”, 國立成功大學機械工程學系,中華民國92年。
42.Hyun S. Myung, Jeon G. Han, Jin H. Boo, Surface and Coatings Technology, 177-178 (2004) 404-408.
43.M. Irie, H. Ohara, A. Nakayama, N. Kitagawa, T. Nomura, Nuclear Instruments and Method in Physics Research B, 121 (1997) 133-136.
44.張啟釗,“摻雜銀、鎢元素之氮化鈦陶瓷薄膜磨潤性能研究”, 國立成功大學機械工程學系,中華民國92年。
45.Hyun S. Myung, Hyuk M. Lee, Leonid R. Shaginyan, Joen G. Han, Surface and Coatings Technology, 163-164 (2003) 591-596.
46.Soo Hyun Kim, Jong Kuk Kim, Kwang Ho Kim, Thin Solid Films, 420-421 (2002) 360-365.
47.M. Nose, Y. Deguchi, T.Mae, E. Honbo, T. Nagae, K. Nogi, Surface and Coatings Technology, 174-175 (2003) 261-265.
48.F. Vaz, L. Rebouta, P. Goudeau, J. Pacaud, H. Garem, J.P. Riviere, A. Cavaleiro, E. Alves. Surface and Coatings Technology, 133-134 (2000) 307-313.
49.P. Holubar, M. Jilek, M. Sima, Surface and Coatings Technology, 133-134 (2000) 145-151.
50.J. Musil, J. Vl?ek, Surface and Coatings Technology, 142-144 (2001) 557-566.
51.J. Vetter, R. Knaup, H. Dwuletzki, E. Schneidra, S.Vogler, Surface and Coatings Technology , 86-87 (1996) 739.
52.P. Hones, Surface and Coatings Technology, 120-121 (1999) 277-283.
53.Fu-Hsing Lu, Hong-Ying Chen, Thin Solid Films, 398-399 (2001) 368–373.
54.K. Subramanian, J. S. Rhodes, C. S. Draper Lab Report, Feb. (1974).