簡易檢索 / 詳目顯示

研究生: 陳建榮
Chen, Chien-Jung
論文名稱: 一個具低輸入電容負載特性的十位元每秒取樣二千萬次逐漸趨近式類比數位轉換器
A 10-bit 20-MS/s Successive-Approximation Analog-to-Digital Converter with Low Input Capacitance Characteristic
指導教授: 張順志
Chang, Soon-Jyh
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系碩士在職專班
Department of Electrical Engineering (on the job class)
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 52
中文關鍵詞: 逐漸趨近式類比數位轉換器
外文關鍵詞: SAR ADC
相關次數: 點閱:105下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們實現了一個十位元每秒取樣二千萬次的逐漸趨近式類比數位轉換器,此種改良的電路架構解決了傳統逐漸趨近式類比數位轉換器輸入負載太大的缺點,成功降低輸入的電容負載,配合一個節省能源的開關切換方式來降低功率消耗。
    本論文中的類比數位轉換器是使用TSMC 0.18-um 1P6M互補金氧半製程下線驗證。核心電路的面積為0.307 mm x 0.335 mm。量測結果顯示在1.8 V的電壓及20 MS/s的取樣頻率下,可達到有效位元數為7.65位元,消耗功率為1.32 mW,而FOM 是328 fJ/conversion-step

    This thesis reports the implementation of a 10-bit 20-MS/s successive-approximation (SAR) analog-to-digital converter (ADC). Comparing with conventional SAR ADCs, this ADC adopts a new architecture to reduce the total input capacitance of a differential SAR ADC. In addition, a set-and-down switching method is adopted to reduce the power consumption of the DAC array.
    The proposed ADC is fabricated in TSMC 0.18-um 1P6M digital CMOS process. The core occupies 0.307 mm x 0.335 mm active area. The measurement results show that the effective number of bits (ENOB) is 7.65 bits and the power consumption is 1.32 mW at the supply voltage of 1.8 V and the sampling rate of 20 MS/s. As a result, the figure-of-merit (FOM) is 328 fJ/conversion-step.

    第一章 緒論 1 1.1 研究動機 1 1.2 論文章節架構 2 第二章 類比數位轉換器的基本概念 3 2.1 類比數位轉換器的簡介 3 2.2 類比數位轉換器的效能評估 4 2.2.1 解析度(Resolution) 5 2.2.2 準確度(Accuracy) 5 2.2.3 位移誤差(Offset error) 5 2.2.4 增益誤差(Gain error) 6 2.2.5 非線性誤差(Nonlinearity) 7 2.2.6 信號雜訊比(Signal-to-Noise Ratio) 9 2.2.7 信號雜訊失真比(Signal-to-Noise and Distortion Ratio) 10 2.2.8 有效位元數(Effective Number of Bits) 10 2.2.9 無雜波動態範圍(Spurious Free Dynamic Range) 11 2.2.10 總諧波失真(Total Harmonic Distortion) 11 2.3 類比數位轉換器的架構 12 2.3.1 快閃式類比數位轉換器(Flash ADC) 12 2.3.2 兩階式類比數位轉換器(Two-Step ADC) 14 2.3.3 管線式類比數位轉換器(Pipelined ADC) 15 2.3.4 逐漸趨近式類比數位轉換器(SAR ADC) 16 2.4 類比數位轉換器架構的總結 17 第三章 逐漸趨近式類比數位轉換器的基礎 19 3.1 逐漸趨近式類比數位轉換器的演算法 19 3.2 逐漸趨近式類比數位轉換器的電路架構與操作 20 3.2.1 以DAC為基礎的逐漸趨近式類比數位轉換器 20 3.2.2 電荷重新分佈逐漸趨近式類比數位轉換器 22 第四章 低輸入電容負載的十位元每秒取樣二千萬次逐漸趨近式類比數位轉換器 26 4.1 導論 26 4.2 低輸入電容負載逐漸趨近式類比數位轉換器的結構與操作 27 4.3 低輸入電容負載逐漸趨近式類比數位轉換器電路設計 33 4.3.1 比較器電路設計 33 4.3.2 數位類比轉換器電路設計 35 4.3.3 取樣與保持電路(Sample and Hold circuit) 36 4.3.4 數位控制邏輯電路(SAR Logic) 38 4.4 晶片佈局與量測設定 39 4.5 量測結果 42 4.6 文獻比較 46 第五章 結論與未來研究方向 48 5.1 結論 48 5.2 未來研究方向 48 參考文獻 49

    [1] B. Razavi, Principles of Data Converter System Design, New York: John Wiley&Sons, 1995
    [2] D. Johns and K. Martin, Analog Integrated Circuit Design. New York: John Wiley&Sons, 1997.
    [3] S.-W. M. Chen and R. W. Brodersen, “A 6-bit 600-MS/s 5.3-mW asynchronous ADC in 0.13-m CMOS,” IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2669-2680, Dec. 2006.
    [4] J. Craninckx and G. Plas, “A 65fJ/Conversion-Step 0-to-50MS/s 0-to-0.7mW 9b Charge-sharing SAR ADC in 90nm Digital CMOS,” IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2007, pp. 246-247.
    [5] Y. K. Chang, C. S. Wang, and C. K. Wang, “A 8-bit 500KS/s low power SAR ADC for bio-medical application,” in IEEE A-SSCC Dig. Tech. Papers, Nov. 2007, pp. 228-231.
    [6] C.-C. Liu, S.-J. Chang, G.-Y. Huang, and Y.-Z. Lin, “A 10-bit 50-MS/s SAR ADC with a Monotonic Capacitor Switching Procedure,” IEEE J. Solid-State Circuits, vol 45, no. 4, pp. 731-740, Apr. 2010.
    [7] C.-C. Liu, Y.-T. Huang, G.-Y. Huang, S.-J. Chang, C.-M. Huang, and C.-H. Huang, “A 6-bit 220-MS/s Time-Interleaving SAR ADC in 0.18-um Digital CMOS Process,” in Proc. of IEEE International Symp. on VLSI Design, Automation & Test, Apr. 2009, pp.215-218.
    [8] H. C. Hong and G. M. Lee “A 65-fJ/Conversion-Step 0.9-V 200-kS/s Rail-to-Rail 8-bit Successive Approximation ADC,” IEEE J. Solid-State Circuits, VOL. 42, NO.104, pp. 2161-2168, October. 2007.
    [9] G. Promitzer, “12-bit low-power fully differential switched capacitor noncalibrating successive approximation ADC with 1MS/s,” IEEE J. Solid-State Circuits, vol. 36, no. 7, pp. 1138-1143, Jul. 2001.
    [10] W. Y.Pang, C. S. Wang, Y. K. Chang, N. K. Chou and C. K. Wang, “A 10-bit 500-KS/s Low Power SAR ADC with Splitting Capacitor for Bio-Medical Applications,” in IEEE A-SSCC Dig. Tech. Papers, Nov. 2009, pp. 149-152.
    [11] B. S. Song, S. H. Lee, and M. F. Tompsett, “A 10-b 15MHz CMOS recycling two-step A/D converter,” IEEE J. Solid-State Circuits, vol. 25, no. 6, pp. 1328–1338, Dec. 1990.
    [12] H.W. Chen, Y.H. Liu, Y.H. Lin, H.S. Chen, “A 3mW 12b 10MS/s Sub-range SAR ADC,” in IEEE A-SSCC Dig. Tech. Papers, Nov. 2009, pp. 153-156
    [13] A. M. Abo and P. R. Gray, “A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline analog-to-digital converter,” IEEE J. Solid-State Circuits, vol. 34, no.5, pp. 599-606, May 1999.
    [14] K. Cornelissens and M. Steyaert, “A novel bootstrapped switch design, applied in a 400MHz clocked  ADC,” in Proc. of IEEE Int. Electronics, Circuits and Systems, Conf., Dec. 2006, pp. 1156-1159.
    [15] 鄭光偉, “1.0-V 10-bit CMOS pipelined analog-to-digital converters,” MS Thesis, National Taiwan Univ., Taiwan, Jul. 2002.
    [16] G.-Y. Huang, C.-C. Liu, Y.-Z. Lin and S.-J. Chang, “A 10-bit 12MS/s Successive Approximation ADC with 1.2-pF Input Capacitance,” in IEEE A-SSCC Dig. Tech. Papers, NOV. 2009, pp. 157-160.
    [17] Y. Zhu, C.-H. Chan, U-F. Chio, S.-W. Sin, S.-P. U R. P. Martins and F. Maloberti, “A 10-bit 100-MS/s Reference-Free SAR ADC in 90nm CMOS,” IEEE J. Solid-State Circuits, vol. 45, pp. 1111-1121, June 2010.
    [18] C. C. Liu, S. J. Chang, G. Y. Huang and Y. Z. Lin, “A 0.92mW 10-bit 50-MS/s SAR ADC in 0.13m CMOS process,” in IEEE Symp. on VLSI Circuits ig. Tech. Papers, Jun. 2009, pp. 236-237.
    [19] S. H. Lewis, H. S. Fetterman, G. F. Gross, J. R. Ramachandran, and T. R. Viswanathan, “A 10-b 20-Msample/s analog-to-digital converter,” IEEE J. Solid-State Circuits, vol. 27, no. 3, pp. 351–358, Mar. 1992.
    [20] Z. Cao, S. Yan and Y. Li, “A 32mW 1.25GS/s 6b 2b/step SAR ADC in 0.13μm
    CMOS,” IEEE J. Solid-State Circuits, vol. 44, no. 3, pp. 862-873, Mar 2009.
    [21] Tao Jiang, Wing Liu, F. Y. Zhong, C. Zhong, P. Y. Chiang, “Single-Channel, 1.25-GS/s, 6-bit, Loop-Unrolled Asynchronous SAR-ADC in 40nm-CMOS,” in Proc. of CICC, 2010.
    [22] J. L. Mccreary and P. R. Gray, “All-MOS charge redistribution analog-to-digital conversion techniques-Part I,” IEEE J. Solid-State Circuits, vol. 10, no. 6, pp. 371-379, Dec. 1975.
    [23] M. D. Scott, B. E. Boser, and K. S. J. Pister, “An ultralow-energy ADC for smart dust,” IEEE J. Solid-State Circuits, vol. 38, no. 7, pp. 1123-1129, Jul. 2003.
    [24] 黃意婷, “A 6-bit 220-MS/s Successive-Approximation Analog-Digital converter,” MS Thesis, National Cheng-Kung Univ., Taiwan, Dec. 2008
    [25] S. J. Lovett, M. Welten, A. Mathewson, and B. Mason, “Optimizing MOS transistor mismatch,” IEEE J. Solid-State Circuits, vol. 33, no. 1, pp. 147–150, Jan. 1998.
    [26] M. Waltari and K. Halonen, Circuit Techniques for Low-Voltage and High-Speed A/D Converters. Kluwer Academic Publishers, 2002.
    [27] R. V. D. Plassche, CMOS Integrated Analog-to-Digital and Digital-to-Analog Converters. Kluwer Academic Publishers, 1994.
    [28] B. P. Ginsburg and A. P. Chandrakasan, “Dual time-interleaved successive approximation register ADCs for an ultra-wideband receiver,” IEEE J. Solid-State Circuits, vol. 42, no. 2, pp. 247-257, Feb. 2007.
    [29] 黃冠穎, “Design of energy efficient successive-approximation analog-to-digital converter,” MS Thesis, National Cheng-Kung Univ., Taiwan, Jul. 2007.

    下載圖示 校內:2016-08-31公開
    校外:2016-08-31公開
    QR CODE