簡易檢索 / 詳目顯示

研究生: 王薏涵
Wang, Yi-Han
論文名稱: 利用應變工程改善互補式金氧半場效電晶體特性之研究
Using Strain Engineering to Improve CMOS Performance
指導教授: 張守進
Chang, Shoou-Jinn
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 87
中文關鍵詞: 應變矽鍺
外文關鍵詞: CMOS, SiGe, strain
相關次數: 點閱:75下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們將應變矽鍺之P型金氧半場效電晶體與應變矽之N型金氧半場效電晶體製作於同一片晶片上,開發出新式的互補式金氧半場效電晶體。由許多文獻中可以得知,應變矽N型金氧半場效電晶體可以有效地提升電子的漂移率,此外,應變矽鍺P型金氧半場效電晶體可以提升電洞的漂移率。因此,我們各別製作P型與N型電晶體元件結構,如此便可以分別去設計兩者最佳的結構參數。實驗結果顯示,新式的互補式金氧半場效電晶體之結構的確較純矽互補式金氧半場效電晶體有著更佳的直流特性。
    可靠度是元件另一個重要的參數。我們也針對矽鍺元件作可靠度分析。我們研究P型場效電晶體的負偏壓溫度效應。負偏壓溫度效應主要是電洞打斷矽與二氧化矽介面的矽氫鍵結,產生介面陷阱進而影響元件的臨限電壓。由於應變矽鍺元件會將大部分的電洞載子侷限在埋藏通道中,降低矽與二氧化矽介面處電洞的濃度。因此矽鍺P型場效電晶體有較小的負偏壓溫度不穩定性效應,也較為適合應用於積體電路。

    In this thesis, two novel CMOS architectures that use tensile stress which induced by the Si nitride-capping layer or SiGe virtual substrate, together with the pseudomorphic compressive stress in SiGe layer to improve the drain current of both N- and PMOSFET simultaneously were investigated. The unique advantage of this process flow is that on the same wafer, individual MOSFET performance can be adjusted independently to their optimum due to the separation process for two type devices. It is found that N- and PMOSFET in both novel CMOS architectures achieved better performance, not only higher drain-to-source saturation current but also higher transconductance (gm) than the Si-control devices, thus making this flow show a great flexibility for developing next-generation high-performance CMOS.
    Moreover, negative bias temperature instability (NBTI) effect on strained SiGe PMOSFETs was demonstrated. Due to holes primarily confined in the buried SiGe channel and lower hole concentration in the Si surface channel, SiGe PMOSFETs have lower NBTI effect compared with control Si devices. The experimental results show that SiGe devices are better choices for the future ULSI technology.

    Abstract (Chinese) i Abstract (English) ii Contents iii Figure Captions iv Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Organization 4 Chapter 2 Characteristics of Si1-xGex Heterostructures 5 2.1 Properties of Si/Si1-xGex Epitaxial Layer 5 2.2 Band Diagram of Si1-xGex System 6 2.2.1 Bandgap of SiGe Alloys 6 2.2.2 Effect of Strain on the Conduction Band and Valence Band 7 2.2.3 Strained SiGe on Si: Type-I Band Alignment 9 2.2.4 Strained Si on SiGe: Type-II Band Alignment 11 2.3 High Field Carrier Transport in Strained Si MOSFETs 13 Chapter 3 Fabrication of Novel CMOS Structure 25 3.1 Motivation 25 3.2 CMOS Structure Using Substrate Strained-SiGe and Mechanical Strained-Si Technology 26 3.2.1 Process Flow 26 3.2.2 Device Structure 30 3.3 Novel CMOS Architecture with Separate Tensile Strained Si and Compressively Strained SiGe Layer 30 3.3.1 Process Flow 30 3.3.2 Device Structure 34 3.4 Measure System 34 Chapter 4 Characteristics of Novel CMOS Structure 41 4.1 CMOS Structure Using Substrate Strained-SiGe and Mechanical Strained-Si Technology 41 4.1.1 Effective Mobility 41 4.1.2 DC Characteristics 43 4.2 Novel CMOS Architecture with Separate Tensile Strained Si and Compressively Strained SiGe Layer 45 4.2.1 Effective Mobility 45 4.2.2 DC Characteristics 45 Chapter 5 Negative Bias Temperature Instability 62 5.1 Introduction 62 5.2 Mechanism of NBTI 63 5.3 Device Structure 66 5.4 Experiment Setup 66 5.5 Results and Discussion 67 Chapter 6 Conclusion and Future Work 78 6.1 Conclusion 78 6.2 Future Work 79 References 80

    [1.1] C. W. Liu, S. Maikap, and C. Y. Yu, “Mobility-enhancement technologies,” IEEE Circuits & Devices, vol. 21, p. 21, May 2005.
    [1.2] N. Mohta and S. E. Thompson, “Mobility enhancement,” IEEE Circuits & Devices, vol. 21, p. 18, Sep. 2005.
    [1.3] D. Rideau, M. Feraille, L. Ciampolini, M. Minondo, C. Tavernier, and H. Jaouen, “Strained Si, Ge, and Si1−xGex alloys modeled with a first-principles-optimized full-zone k-p method,” Phys. Rev. B, vol. 73, p. 195208, Nov. 2006.
    [1.4] B. S. Meyerson, “Low-temperature silicon epitaxy by ultrahigh vacuum/chemical vapor deposition,” Appl. Phys. Lett., 48, p. 797, 1986.
    [1.5] B. S. Meyerson, “UHV/CVD growth of Si and SiGe alloys: chemistry, physics, and device applications,” Proc. IEEE, vol. 80, p. 1592, 1992.
    [1.6] B. Tillack, D. Krüger, P. Gaworzewski, and G. Ritter, “Atomic layer doping of SiGe by low pressure chemical vapor deposition,” Thin Solid Films, vol. 294, p. 15, 1997.
    [1.7] B. Tillack, G. Ritter, D. Krüger, P. Zaumseil, G. Morgenstern, and K. D. Glowatzki, “Sharp boron doping within thin SiGe layer by rapid thermal chemical vapor deposition,” Mater. Sci. Technol., vol. 11, p. 1060, 1995.
    [1.8] A. T. Vink, P. J. Roksnoer, C. J. Vriezema, L. J. van Ijzendoorn, and P. C. Zalm, “Sharp boron spikes in silicon grown at reduced and atmospheric pressure by fast-gas-switching CVD,” Jpn. J. Appl. Phys., vol. 29, p. 2307, 1990.
    [1.9] J. C. Bean, L. C. Feldman, A. T. Fiory, S. Nakahara, and I. K. Robinson, “GexSi1-x/Si strained-layer superlattice grown by molecular beam epitaxy,” J. Vac. Sci. Technol. A, vol. 2, p. 436, 1984.
    [1.10] J. R. Arthur, “ Molecular beam epitaxy,” Surf. Sci., vol. 500, p. 189, 2002.
    [1.11] M. A. Herman, “Approaches to understanding MBE growth phenomena,” Thin Solid Films, vol. 267, no. 1-2, p. 1, 1995.
    [2.1] R. People, “Physical and applications of GexSi1-x/Si strained-layer heterostructures,” IEEE J. Quantum Electron., vol. QE-22, no. 9, p. 1696, 1986.
    [2.2] J. H. van der Merwe, “Crystal interface. Part II. Finite overgrowths,” J. Appl. Phys., vol. 34, p. 123, 1963.
    [2.3] Y. H. Xie, “SiGe field effect transistors,” Mater. Sci. Eng. R-Rep., vol. 25, p. 89, 1999.
    [2.4] R. Braunstein, A. R. Moore, and F. Herman, “Intrinsic Optical Absorption in Germanium-Silicon Alloys,” Phys. Rev. vol. 109, p. 695, 1958
    [2.5] D. V. Lang, R. People, J. C. Bean, and A. M. Sergent, “Measurement of the band gap of GexSi1−x/Si strained-layer heterostructures,” Appl. Phys. Lett. vol. 47, p. 1333, 1985
    [2.6] D. K. Nayak and S. K. Chun, “Low-field hole mobility of strained Si on (100) Si1–xGex substrate,” Appl. Phys. Lett. vol. 64, p. 2514, 1994
    [2.7] R. People, J. C. Bean, D. V. Lang, A. M. Sergent, and H. L. Stormer ,K. W. Wecht, R. T. Lynch, and K. Baldwin, “Modulation doping in GexSi1-x/Si strained layer heterostructures,” Appl. Phys. Lett. vol. 45, p. 1231, 1984
    [2.8] M. M. Rieger and P. Vogl, “Electronic-band parameters in strained Si1-xGex alloys on Si1-yGey substrates,” Phys. Rev. B, vol. 48, p. 14276, 1993
    [2.9] S. Subbanna, G. Freeman, D. Ahlgren, D. Greenberg, D. Harame, J. Dunn, D. Herman, B. Meyerson, Y. Greshishchev, P. Schvan, D. Thornberry, D. Sakamoto, and R. Tayrani, ”Integration and Design Issues in Combining Very-High-Speed Silicon-Germanium Bipolar Transistors and ULSI CMOS for System-on-a-Chip Applications,” IEDM Tech. Dig., p. 845, 1999
    [2.10] T. E. Whall and E. H. C. Parker, “SiGe—Heterostructures for CMOS technology,” Thin Solid Films vol. 367, p. 250, 2000
    [2.11] G.Hock, T. Hackbarth, U. Erben, E. Kohn, and U. Konig, “High performance 0.25m p-type Ge/SiGe MODFET’s,”Electron. Lett. vol. 34, p. 1888, 1998
    [2.12] G. Abstreiter, H. Bragger, T. Wolf, H. Jorke, and H. J. Herzog, “Strain-Induced Two-Dimensional Electron Gas in Selectively Doped Si/SixGe1-x Superlattices,” Phys. Rev. Lett. 54, pp. 2441, 1985
    [2.13] J. Welser, J. L. Hoyt, S. Takagi, and J. F. Gibbons, “Strain dependence of the performance enhancement in strained-Si n-MOSFETs,” IEDM Tech. Dig., pp. 373, 1994
    [2.14] K. Ismail, S. F. Nelson, J. O. Chu, and B. S. Meyerson, “Electron transport properties of Si/SiGe heterostructures: Measurements and device implications,” Appl. Phys. Lett. 63, pp. 660, 1993
    [2.15] N. Sugii, K. Nakagawa, Y. Kimura, S. Yamaguchi, and M. Miyao, “High Electron Mobility in Strained Si Channel of Si1-xGex/Si/Si1-xGex Heterostructure with Abrupt Interface,” Semicond. Sci. Technol. 13, pp. A140, 1998
    [2.16] J. Weiser, J. L. Hoyt, and J. F. Gibbons, “Electron mobility enhancement in strained-Si n-type metal-oxide-semiconductor field-effect transistors,” IEEE Electron Dev. Lett. 15, pp. 100, 1994
    [2.17] D. K. Nayak, J. C. S. Woo, J. S. Park, K. L. Wang, and K. P. MacWilliams, “High-mobility p-channel metal-oxide-semiconductor field-effect transistor on strained Si,” Appl. Phys. Lett. 62, pp. 2853, 1993
    [2.18] T. Yamada, J.-R. Zhou, H. Miyata, and D. K. Ferry, “In-plane transport properties of Si/Si1-xGex structure and its FET performance by computer simulation,” IEEE Trans. Electron Dev. 41, pp. 1513, 1994.
    [2.19] F. M. Bufler and B. Meinerzhagen, “Hydrodynamic transport parameters for holes in strained silicon,” Proceedings of the Sixth International IEEE Workshop on Computational Electronics, pp. 242, 1998
    [2.20] K. Rim, J. L. Hoyt, and J. F. Gibbons, “Fabrication and Analysis of Deep Submicron Strained-Si N-MOSFET’s,” IEEE Trans. Electron Dev. 47, pp. 1406, 2000
    [3.1] S. Takagi, T. Mizuno, T. Tezuka, N. Sugiyama, T. Numata, K. Usuda, Y. Moriyama, S. Nakaharai, and M. Koga, “Channel structure design, fabrication and carrier transport properties of strained-Si / SiGe-On- Insulator (Strained-SOI) MOSFET,” in IEDM Tech. Dig., pp. 57-60, 2003.
    [3.2] K. Rim, J. L. Hoyt, and J. F. Gibbons, “Fabrication and analysis of deep submicron strained-Si n-MOSFET’s,” IEEE Trans. Electron Devices, vol. 47, no. 7, p. 1406, 2000.
    [3.3] N. Sugii, K. Nakagawa, S. Yamaguchi, and M. Miyao, “Role of Si1-xGex buffer layer on mobility enhancement in a strained-Si n-channel metal-oxide-semiconductor field-effect transistor,” Appl. Phys. Lett., vol. 75, no. 19, 8, p. 2948, 1999.
    [3.4] Y. P. Wang, S. L. Wu, and S. J. Chang, “Investigation of transport mechanism for strained Si nMOSFET grown on multi-layer substrate”, Jpn. J. Appl. Phys., vol. 44, no. 51, p. L1560, 2005.
    [3.5] C. H. Chen, T. L. Lee, T. H. Hou, C. L. Chen, C. C. Chen, J. W. Hsu, K. L. Cheng, Y. H. Chiu, H. J. Tao, Y. Jin, C. H. Diaz, S. C. Chen, and M. S. Liang, “Stress memorization technique (SMT) by selectively strained-nitride capping for sub-65 nm high-performance strained-Si device application,” in VLSI Symp. Tech. Dig., p. 56, 2004.
    [3.6] S. Ito, H. Namba, K. Yamaguchi, T. Hirata, K. A. S. Koyama, S. Kuroki, N. Ikezawa, T. Saitoh, and T. Horiuchi, “Mechanical stress effect of etch-stop nitride and its impact on deep submicron transistor design,” in IEDM Tech. Dig., p. 247, 2000.
    [3.7] Z. Shi, D. Onsongo, and S. K. Banerjee, “Mobility and performance enhancement in compressively strained SiGe channel pMOSFETs,” Appl. Surf. Sci., vol. 224, no. 1-4, p. 248, 2004.
    [3.8] J. Jung, C. N. Chleirigh, S. Yu, O. O. Olubuyide, J. Hoyt, and D. A. Antoniadis, “Tradeoff between mobility and subthreshold characteristics in dual-channel heterostructure n- and p-MOSFETs,” IEEE Electron Device Lett., vol. 25, no. 8, p. 562, 2004.
    [3.9] J. Jung, M. L. Lee, S. Yu, E. A. Fitzgerald, and D. A. Antoniadis, “Implementation of both high-hole and electron mobility in strained Si/strained Si1-yGey on relaxed Si1-xGex (x<y) virtual substrate,” IEEE Electron Device Lett., vol. 24, no. 7, p. 460, 2003.
    [3.10] A. Shimizu, K. Hachimine, N. Ohki, M. Koguchi, Y. Nonaka, H. Sato, and F. Ootsuka, “Local mechanical-stress control (LMC) : a new technique for CMOS-performance enhancement,” in IEDM Tech. Dig., p. 433, 2001.
    [3.11] S. Pidin, T. Mori, R. Nakamura, T. Saiki, R. Tanabe, S. Satoh, M. Kase, K. Hashimoto, and T. Sugii, “MOSFET current drive optimization using silicon nitride capping layer for 65-nm technology node,” in VLSI Symp. Tech. Dig., p. 54, 2004.
    [4.1] C. H. Ge, C. C. Lin, C. H. Ko, C. C. Huang, Y. C. Huang, B. W. Chan, B. C. Perng, C. C. Sheu, P. Y. Tsai, L. G. Yao, C. L. Wu, T. L. Lee, C. J. Chen, C. T. Wang, S. C. Lin, Y. C. Yeo, and C. Hu, “Process-strained Si (PSS) CMOS technology featuring 3D strain engineering,” in IEDM Tech. Dig., p. 73, 2003.
    [4.2] S. Pidin, T. Mori, R. Nakamura, T. Saiki, R. Tanabe, S. Satoh, M. Kase, K. Hashimoto, and T. Sugii, “MOSFET current drive optimization using silicon nitride capping layer for 65-nm technology node,” in VLSI Symp. Tech. Dig., p. 54, 2004.
    [5.1] Y. Miura, and Y. Matukura, “Investiation of silicon-silicon dioxide interface using MOS structure,” Jpn. J. Appl. Phys., vol. 5, p. 180, 1966.
    [5.2] A. Goetzberger, and H. E. Nigh, “Surface charge after annealing of Al–SiO2–Si structures under bias,” Proc. IEEE, vol. 54, no. 10, p. 1454, 1966.
    [5.3] A. Goetzberger, A. D. Lopez, and R. J. Strain, “On the formation of surface states during stress aging of thermal Si–SiO2 interfaces,” J. Electrochem. Soc., vol. 120, p. 90, 1973.
    [5.4] B. E. Deal, M. Sklar, A. S. Grove, and E. H. Snow, “Characteristics of the surface-state charge (Qss) of thermally oxidized silicon,” J. Electrochem. Soc., vol. 114, p. 266, 1967.
    [5.5] S. F. Hofstein, “Stabilization of MOS devices,” Solid-State Electron., vol. 10, p. 657, 1967.
    [5.6] K. O. Jeppson, and C. M. Svensson, “Negative bias stress of MOS devices at high electric fields and degradation of MOS devices,” J. Appl. Phys., vol. 48, no. 5, p. 2004, 1977.
    [5.7] S. Chakravarthi, A. Krishnan, V. Reddy, C. F. Machala, and S. Krishnan, “A comprehensive framework for predictive modeling of negative bias temperature instability,” Proceedings of the International Reliability Physics Symposium, p. 273, 2002.
    [5.8] M. Alam, “A critical examination of the mechanics of dynamic NBTI for p-MOSFETs,” in IEDM Tech. Dig., p. 345, 2003.
    [5.9] S. Mahapatra, M. A. Alam, P. B. Kumar, T. R. Dalei, D. Varghese, and D. Saha, “Negative bias temperature instability in CMOS devices,” Microelectron. Eng., vol. 80, p. 114, 2005.
    [6.1] N. Lukyanchikova, N. Garbar, M. Petrichuk, E. Simoen and C. Claeys, “Flicker noise in deep submicron nMOS transistors, ” Solid State Electron., vol. 4, no. 7, p. 1239, 2000.
    [6.2] Y. J. Song, J. W. Lim, B. Mheen, , “1/f Noise in Si0.8Ge0.2 pMOSFETs under Fowler–Nordheim stress, ” IEEE Electron Devices Lett., vol. 50, p. 1152, 2003.
    [6.3] D. Onsongo, D. Q. Kelly, S. Dey, R. L.Wise, “Improved hot-electron reliability in strained-Si nMOS, ” IEEE Trans. Electron Devices, vol. 51, p. 2193, 2004.

    下載圖示 校內:2018-07-07公開
    校外:2018-07-07公開
    QR CODE