簡易檢索 / 詳目顯示

研究生: 王湯貴
Kuei, Wang-Tang
論文名稱: 單晶矽化鎳奈米線之製備方法、成長與物理特性之研究
Studies on the Synthesis Methods, Growth and Physical Properties of Single-Crystalline Nickel Silicide Nanowires
指導教授: 呂國彰
Lu, Kuo-Chang
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 106
中文關鍵詞: 矽化鎳奈米線奈米材料
外文關鍵詞: Nickel silicide, Nanowire, Wet chemical etchin, Magnetic properties, Field emission properties
相關次數: 點閱:91下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在尺寸微小的半導體製程,各大研究單位都在鑽研各式各樣的奈米級內連線、薄膜,因其特殊的物理性質和成長反應,是相當重要的研究。本研究主要以化學氣相沉積法(CVD),考量在相同環境下,微調實驗參數,以相同的前驅物分別搭配矽基板和蝕刻好的矽奈米線,成功觀測到不一樣的反應機制,並以SEM觀測其形貌,再以材料分析手法使用EDS、XRD、TEM和物理性質多方佐證,總計共成長出Ni3Si、Ni31Si12、Ni2Si、NiSi奈米線相,結論出兩種反應機制Vapor-Solid(VS)和Diffusion-Induced。最後選取比較適合量測的物理性質,場發射量測測得Ni31Si12的β為5923以及起始電場為1.6V/μm,Ni2Si的β為4918以及起始電場為3.4V/μm,NiSi的β為3301以及起始電場為4.6V/μm。磁性質則驗證出Ni2Si和NiSi奈米線相的差異,在低溫(2K)下,Ni2Si的矯頑磁場為268Oe,而NiSi的矯頑磁場則為115Oe;在300K下,Ni2Si的矯頑磁場為162Oe,而NiSi的矯頑磁場則為48Oe,顯示出NiSi的相對軟磁性,此外藉由零場冷ZFC更觀測到奈米鐵磁性(Ferromagnetic)結構類似超順磁性質(Superparamagnetism)Ni2Si的blocking temperature(TB)的出現。電性量測則以直接接觸法量測直徑20nm以及長3μm的NiSi奈米線,計算出其電阻率(resistivity)ρ=23.

    Nickel silicide nanowire plays a significant role in study of contact material owing to the well-behaved physical properties and compatibility in silicide technology. Herein, we present two different CVD silicidation paths of same NiCl2 precursor to synthesize single-crystalline NiSi nanowire. By changing substrate structure with wet chemical etching process, the interesting change of growing mechanism has been observed. Characterization of NiSi nanowire were examined by SEM, XRD,TEM in sequence and certification of its phase were carried out by HR-TEM, TEM-EDS, FFTs, SAED demonstrated a single-crystalline NiSi orthorhombic structure. Magnetic property measurements show that NiSi nanowire performed a soft-ferromagnetic, and field emission property measurements show remarkable field enhancement factor 3301.

    致謝 I 摘要 II Extended Abstract IV 總目錄 XV 圖目錄 XVII 表目錄 XXI 第一章 序論 1 1.1前言 1 1.2研究目的 4 1.3研究動機 5 第二章 文獻回顧 6 2.1奈米科技 6 2.2過渡金屬矽化物奈米線 9 2.3矽化鎳奈米線和Ni-Si系統 10 2.4奈米線合成方法 16 第三章 實驗方法 20 3.1實驗設計 20 3.2實驗步驟 22 3.3實驗分析 26 3.4 X-ray繞射分析儀(X-ray diffractometer, XRD) 27 3.5掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 29 3.6穿透式電子顯微鏡(Transmission Electron Microscopy, TEM) 31 3.7場發射量測系統(Field Emission Measurement System) 33 3.8磁性量測系統(Superconducting Quantum Interference Device, SQUID) 34 3.9電性量測系統(Multi-Probe Nano-Electronics Measurement System) 36 第四章 實驗結果 38 4.1成相結果分析 38 4.1-1實驗(A)部分 38 4.1-2實驗(B)部分 47 4.2參數變化 56 4.2-1實驗(A)壓力和反應溫度的變化 56 4.2-2實驗(B)壓力和反應溫度的變化 61 4.3副產物(side product)成長分析 63 4.3-1實驗(A)的薄膜成長 63 4.3-2實驗(B)的叢聚包覆物成長 71 4.4反應機制探討 74 4.4-1實驗(A)的反應機制 74 4.4-2實驗(B)的反應機制 78 4.4-3反應總結 81 4.5場發射量測 85 4.6磁性量測 91 4.7電性量測 96 第五章 總結 100 附件 參考書目 102

    [1] D. Bhattacharya and N. K. Jha, "FinFETs: From Devices to Architectures," Advances in Electronics, vol. 2014, pp. 1-21, 2014.
    [2] Y. Wu, J. Xiang, C. Yang, W. Lu, and C. M. Lieber, "Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures," Nature, vol. 430, pp. 61-5, 2004.
    [3] W. W. Wu, K. C. Lu, K. N. Chen, P. H. Yeh, C. W. Wang, Y. C. Lin, and Y. Huang, "Controlled large strain of Ni silicide/Si/Ni silicide nanowire heterostructures and their electron transport properties," Applied Physics Letters, vol. 97, p. 203110, 2010.
    [4] C.-Y. Lee, M.-P. Lu, K.-F. Liao, W.-W. Wu, and L.-J. Chen, "Vertically well-aligned epitaxial Ni31Si12 nanowire arrays with excellent field emission properties," Applied Physics Letters, vol. 93, p. 113109, 2008.
    [5] J.-Y. Lin, H.-M. Hsu, and K.-C. Lu, "Growth of single-crystalline nickel silicide nanowires with excellent physical properties," CrystEngComm, vol. 17, pp. 1911-1916, 2015.
    [6] W. L. Chiu, C. H. Chiu, J. Y. Chen, C. W. Huang, Y. T. Huang, K. C. Lu, C. L. Hsin, P. H. Yeh, and W. W. Wu, "Single-crystalline delta-Ni2Si nanowires with excellent physical properties," Nanoscale Res Lett, vol. 8, p. 290, 2013.
    [7] Y. C. Chou, W. Tang, C. J. Chiou, K. Chen, A. M. Minor, and K. N. Tu, "Effect of Elastic Strain Fluctuation on Atomic Layer Growth of Epitaxial Silicide in Si Nanowires by Point Contact Reactions," Nano Lett, vol. 15, pp. 4121-8, 2015.
    [8] C.-M. Lu, H.-F. Hsu, and K.-C. Lu, "Growth of single-crystalline cobalt silicide nanowires and their field emission property," Nanoscale Research Letters, vol. 8, pp. 1-6, 2013.
    [9] H.-F. Hsu, P.-C. Tsai, and K.-C. Lu, "Single-crystalline chromium silicide nanowires and their physical properties," Nanoscale Research Letters, vol. 10, pp. 1-8, 2015.
    [10] E. Prati, M. De Michielis, M. Belli, S. Cocco, M. Fanciulli, D. Kotekar-Patil, M. Ruoff, D. P. Kern, D. A. Wharam, J. Verduijn, G. C. Tettamanzi, S. Rogge, B. Roche, R. Wacquez, X. Jehl, M. Vinet, and M. Sanquer, "Few electron limit of n-type metal oxide semiconductor single electron transistors," Nanotechnology, vol. 23, p. 215204, 2012.
    [11] J. Kim, Y. H. Shin, J. H. Yun, C. S. Han, M. S. Hyun, and W. A. Anderson, "A nickel silicide nanowire microscopy tip obtains nanoscale information," Nanotechnology, vol. 19, p. 485713, 2008.
    [12] T. Mikolajick and W. M. Weber, "Silicon Nanowires: Fabrication and Applications," pp. 1-25, 2015.
    [13] C. A. Decker, R. Solanki, J. L. Freeouf, J. R. Carruthers, and D. R. Evans, "Directed growth of nickel silicide nanowires," Applied Physics Letters, vol. 84, p. 1389, 2004.
    [14] Y. Wu, J. Xiang, C. Yang, W. Lu, and C. M. Lieber, "Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures," Nature, vol. 430, pp. 61-65, 2004.
    [15] C. J. Kim, K. Kang, Y. S. Woo, K. G. Ryu, H. Moon, J. M. Kim, D. S. Zang, and M. H. Jo, "Spontaneous Chemical Vapor Growth of NiSi Nanowires and Their Metallic Properties," Advanced Materials, vol. 19, pp. 3637-3642, 2007.
    [16] J. Kim, D. H. Shin, E.-S. Lee, C.-S. Han, and Y. C. Park, "Electrical characteristics of single and doubly connected Ni silicide nanowire grown by plasma-enhanced chemical vapor deposition," Applied Physics Letters, vol. 90, p. 253103, 2007.
    [17] Y. Song and S. Jin, "Synthesis and properties of single-crystal β3-Ni3Si nanowires," Applied Physics Letters, vol. 90, p. 173122, 2007.
    [18] J. Kim and W. A. Anderson, "Direct Electrical Measurement of the Self-Assembled Nickel Silicide Nanowire," Nano Letters, vol. 6, pp. 1356-1359, 2006.
    [19] K.-C. Lu, W.-W. Wu, H.-W. Wu, C. M. Tanner, J. P. Chang, L. J. Chen, and K. N. Tu, "In situ Control of Atomic-Scale Si Layer with Huge Strain in the Nanoheterostructure NiSi/Si/NiSi through Point Contact Reaction," Nano Letters, vol. 7, pp. 2389-2394, 2007.
    [20] Y. Song, A. L. Schmitt, and S. Jin, "Ultralong Single-Crystal Metallic Ni2Si Nanowires with Low Resistivity," Nano Letters, vol. 7, pp. 965-969, 2007.
    [21] Y. C. Lin, Y. Chen, D. Xu, and Y. Huang, "Growth of nickel silicides in Si and Si/SiOx core/shell nanowires," Nano Lett, vol. 10, pp. 4721-6, 2010.
    [22] K. Kang, S.-K. Kim, C.-J. Kim, and M.-H. Jo, "The Role of NiOx Overlayers on Spontaneous Growth of NiSix Nanowires from Ni Seed Layers," Nano Letters, vol. 8, pp. 431-436, 2008.
    [23] W. Tang, S. T. Picraux, J. Y. Huang, X. Liu, K. N. Tu, and S. A. Dayeh, "Gold catalyzed nickel disilicide formation: a new solid-liquid-solid phase growth mechanism," Nano Lett, vol. 13, pp. 6009-15, 2013.
    [24] Y. Chen, Y. C. Lin, X. Zhong, H. C. Cheng, X. Duan, and Y. Huang, "Kinetic manipulation of silicide phase formation in Si nanowire templates," Nano Lett, vol. 13, pp. 3703-8, 2013.
    [25] I. N. Lund, J. H. Lee, H. Efstathiadis, P. Haldar, and R. E. Geer, "Influence of catalyst layer thickness on the growth of nickel silicide nanowires and its application for Li-ion batteries," Journal of Power Sources, vol. 246, pp. 117-123, 2014.
    [26] P. Nash and A. Nash, "The Ni−Si (Nickel-Silicon) system," Bulletin of Alloy Phase Diagrams, vol. 8, pp. 6-14, 1987.
    [27] P. S. Lee, D. Mangelinck, K. L. Pey, J. Ding, J. Y. Dai, C. S. Ho, and A. See, "On the Ni–Si phase transformation with/without native oxide," Microelectronic Engineering, vol. 51–52, pp. 583-594, 2000.
    [28] R. Tomita, H. Kimura, M. Yasuda, K. Maeda, S. Ueno, T. Tomizawa, Y. Kunimune, H. Nakamura, M. Moritoki, and H. Iwai, "Formation of high resistivity phases of nickel silicide at small area," Microelectronics Reliability, vol. 53, pp. 659-664, 2013.
    [29] H. Iwai, T. Ohguro, and S.-i. Ohmi, "NiSi salicide technology for scaled CMOS," Microelectronic Engineering, vol. 60, pp. 157-169, 2002.
    [30] J. Zhao, Z.-G. Jin, X.-X. Liu, and Z.-F. Liu, "Growth and morphology of ZnO nanorods prepared from Zn(NO3)2/NaOH solutions," Journal of the European Ceramic Society, vol. 26, pp. 3745-3752, 2006.
    [31] J.-H. Park, Y.-J. Choi, and J.-G. Park, "Synthesis of ZnO nanowires and nanosheets by an O2-assisted carbothermal reduction process," Journal of Crystal Growth, vol. 280, pp. 161-167, 2005.
    [32] M. Meyyappan, D. Lance, C. Alan, and H. David, "Carbon nanotube growth by PECVD: a review," Plasma Sources Science and Technology, vol. 12, p. 205, 2003.
    [33] W. Lee, M.-C. Jeong, and J.-M. Myoung, "Catalyst-free growth of ZnO nanowires by metal-organic chemical vapour deposition (MOCVD) and thermal evaporation," Acta Materialia, vol. 52, pp. 3949-3957, 2004.
    [34] S. K. Srivastava, D. Kumar, S. W. Schmitt, K. N. Sood, S. H. Christiansen, and P. K. Singh, "Large area fabrication of vertical silicon nanowire arrays by silver-assisted single-step chemical etching and their formation kinetics," Nanotechnology, vol. 25, p. 175601, 2014.
    [35] L. Reimer, Transmission electron microscopy: physics of image formation and microanalysis vol. 36: Springer, 2013.
    [36] H. Weinstock, SQUID sensors: fundamentals, fabrication and applications vol. 329: Springer Science & Business Media, 2012.
    [37] X. Fan, H. Zhang, N. Du, and D. Yang, "Phase-controlled synthesis of nickel silicide nanostructures," Materials Research Bulletin, vol. 47, pp. 3797-3803, 2012.
    [38] A. L. Schmitt, J. M. Higgins, J. R. Szczech, and S. Jin, "Synthesis and applications of metal silicidenanowires," J. Mater. Chem., vol. 20, pp. 223-235, 2010.
    [39] A. M. Gusak, T. Zaporozhets, Y. O. Lyashenko, S. Kornienko, M. Pasichnyy, and A. Shirinyan, Diffusion-controlled solid state reactions: in alloys, thin-films, and nanosystems: John Wiley & Sons, 2010.
    [40] 馮端, "主編, 固態物理學大辭典," 1998 年, vol. 3, pp. 499-500, 1998.
    [41] R. Abbaschian and R. E. Reed-Hill, Physical metallurgy principles: Cengage Learning, 2008.
    [42] K. Graff, Metal impurities in silicon-device fabrication vol. 24: Springer Science & Business Media, 2013.
    [43] D.-J. Kim, J.-K. Seol, M.-R. Lee, J.-H. Hyung, G.-S. Kim, T. Ohgai, and S.-K. Lee, "Ferromagnetic nickel silicide nanowires for isolating primary CD4+ T lymphocytes," Applied Physics Letters, vol. 100, p. 163703, 2012.
    [44] H. J. Williams, J. H. Wernick, R. C. Sherwood, and G. K. Wertheim, "Magnetic Properties of the Monosilicides of Some 3d Transition Elements," Journal of Applied Physics, vol. 37, pp. 1256-1256, 1966.
    [45] E. Gaigneaux, M. Devillers, S. Hermans, P. Jacobs, J. Martens, and P. Ruiz, Scientific Bases for the Preparation of Heterogeneous Catalysts: Proceedings of the 10th International Symposium, Louvain-la-Neuve, Belgium, July 11-15, 2010 vol. 175: Elsevier, 2010.
    [46] X. Chen, J. Guan, G. Sha, Z. Gao, C. T. Williams, and C. Liang, "Preparation and magnetic properties of single phase Ni2Si by reverse Rochow reaction," RSC Adv., vol. 4, pp. 653-659, 2014.
    [47] S.-Y. Chen, P.-H. Yeh, W.-W. Wu, U.-S. Chen, Y.-L. Chueh, Y.-C. Yang, S. Gwo, and L.-J. Chen, "Low Resistivity Metal Silicide Nanowires with Extraordinarily High Aspect Ratio for Future Nanoelectronic Devices," ACS Nano, vol. 5, pp. 9202-9207, 2011.

    無法下載圖示 校內:2022-01-16公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE