簡易檢索 / 詳目顯示

研究生: 簡崇育
Chien, Chung-Yu
論文名稱: 基於雙Λ四波混頻的高效光波長轉換
High-efficiency Optical Wavelength Conversion Based on Double Λ Four-wave Mixing
指導教授: 陳泳帆
Chen, Yong-Fan
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 61
中文關鍵詞: 電磁波引發透明反向四波混頻雙光子調變相位不匹配量子轉頻器
外文關鍵詞: electromagnetically induced transparency (EIT), backward four-wave mixing (BFWM), two-photon detuning, phase mismatch, quantum frequency converter
相關次數: 點閱:100下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文使用冷銣原子研究基於電磁波引發透明下的反向四波混頻,光波長自780奈米轉為795奈米。根據理論預測,在光學密度39與85時,分別有近75%與90%之轉換效率。我們分別以驅動光拉比頻率與雙光子調變作為操縱變因進行兩種實驗,然而我們實驗所得之轉換效率皆低於理論所預測,並且實驗結果之行為與理論曲線不符,我們推測此現象與相位不匹配以及雙光子調變間的補償有關,因此若我們要實現轉換效率高於90%的量子轉頻器尚有課題需克服。

    In this thesis, we use cold rubidium atoms to study backward four-wave mix-ing (BFWM) based on electromagnetically induced transparency (EIT). The wavel-ength of the light is conversed from 780 nm to 795nm.

    Based on the theoretical model, under optical density (OD) 39 and 85, the e-fficiency of the conversion can reach around 75% and 90% respectively. We con-duct two kinds of experiments, one is that we change the Rabi frequency of the driving light, and the other is we change the two phpton detuning. However, bothof the efficiency we observed are lower than that of predicted by the model. Plu-s, the results do not behave like the thereotical curves. We surmise that this is d-ue to the compensation between two photon detuning and phase mismatch. Finall-y, if we want to achieve efficiency 90%, there are still some issues need to be
    considered.

    目錄 摘要 i 英文延伸摘要 ii 目錄 xii 表目錄 xiv 圖目錄 xiv 第一章 簡介 1 1.1 簡介與研究動機 1 第二章 基本理論 3 2.1 3 2.1.1 交互作用下的哈密頓量 3 2.1.2 光學布拉赫方程式(Optical-Bloch equation , OBE) 4 2.1.3 馬克斯威爾-薛丁格方程式(Maxwell-Schro ̈dinger equation, MSE) 5 2.1.4 旋波近似(Rotating wave approximation , RWA) 7 2.2 二能階系統 8 2.3 三能階系統 12 2.4 18 2.4.1 基於電磁波引發透明的四波混頻 18 2.4.2 正向四波混頻 20 2.4.3 反向四波混頻 22 2.4.4 相位不匹配 25 2.5 光偏移效應 27 第三章 實驗系統 29 3.1.1 29 3.1.1 玻璃真空腔體 29 3.1.2 銣-87原子 30 3.1.3 磁光陷阱(Magneto-optical trap, MOT) 32 3.1.4 陷阱光、回幫浦光與暗區自發力光阱(Dark MOT) 34 3.2 鎖頻系統 35 3.3 電磁波引發透明系統 36 3.4 37 3.4.1 反向四波混頻系統 37 3.4.2 引導光 38 第四章 結果與討論 39 4.1 慢光實驗 39 4.2 41 4.2.1 反向四波混頻實驗(光學密度39) 41 4.2.2 反向四波混頻實驗(光學密度85) 50 第五章 結論與展望 57 參考文獻 59

    [1] Roy J. Glauber, “The Quantum Theory of Optical Coherence,” Phys. Rev. 130, 2529 (1963).

    [2] Michael G. Raymer and Katrik Srinivasan, ”Manipulating the color and shape of single
    photons,” Physics Today, 65, 11:32, 2012.

    [3] Wolfgang Tittel Nicolas Gisin, Gree ́goire Ribordy, and Hugo Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145, 2002.

    [4] S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin & H. Zbinden, ‘‘A
    photonic quantum information interface,’’ Nature volume 437, pages 116–120 (2005).

    [5] Prem Kumar, ‘‘Quantum frequency conversion,’’ Opt. Lett. 15, 1476-1478 (1990).

    [6] Alex S. Clark, Shayan Shahnia, Matthew J. Collins, Chunle Xiong, and Benjamin J.
    Eggleton, ‘‘High-efficiency frequency conversion in the single-photon regime,’’ Opt.
    Lett. 38, 947-949 (2013).

    [7] Hoonsoo Kang, Gessler Hernandez, and Yifu Zhu, ‘‘Resonant four-wave mixing with
    slow light,’’ Phys. Rev. A 70, 061804(R) (2004).

    [8] Hoonsoo Kang, Gessler Hernandez, Jiepeng Zhang, and Yifu Zhu, ‘‘Backward
    four-wave mixing in a four-level medium with electromagnetically induced
    transparency,’’ J. Opt. Soc. Am. B 23, 718-722 (2006).

    [9] Chang-Kai Chiu, ‘‘Studies on EIT-based four-wave mixing at low light levels,’’ Master
    Thesis, NCKU(2013).

    [10] Zi-Yu Liu, Jian-Ting Xiao, Jia-Kang Lin, Jun-Jie Wu, Jz-Yuan Juo, Chin-Yao Cheng & Yong-Fan Chen, ‘‘High-efficiency backward four-wave mixing by quantum interference,’’ Scientific Reports volume 7, Article number: 15796 (2017).

    [11] Jz-Yuan Juo, Jia-Kang Lin, Chin-Yao Cheng, Zi-Yu Liu, Ite A. Yu, and Yong-Fan Chen, ‘‘Demonstration of spatial-light-modulation-based four-wave mixing in cold atoms,’’ Phys. Rev. A 97, 053815 (2018).

    [12] Christopher J. Foot, Atomic Physics, New York: Oxford University Press.

    [13] Marlan O. Scully and M. Suhail Zubairy, Quantum Optics, The Press Syndicate of the University of Cambridge.

    [14] Christopher Gerry, Peter Knight, Introductory to Quantum Optics, Cambridge University Press

    [15] Weisskopf, Viktor (1935). "Probleme der neueren Quantentheorie des Elektrons". Naturwissenschaften. 23: 631–637.

    [16] S. E. Harris, J. E. Field, and A. Imamoglu, ‘‘Nonlinear optical processes using
    electromagnetically induced transparency,’’ Phys. Rev. Lett. 64, 1107 (1990).
    [17] Yong-Fan Chen, Zen-Hsiang Tsai, Yu-Chen Liu, and Ite A. Yu, ”Low-light-level photon switching by quantum interference,” Optics Letters Vol. 30, pp. 3207-3209 (2005)
    [18] Zi Yu Liu, Yi Hsin Chen, Yen Chun Chen, Hsiang Yu Lo, Pin Ju Tsai, Ite A. Yu, Ying Cheng Chen, Yong Fan Chen, ‘Large cross-phase modulations at the few-photon level,’’ Phys. Rev. Lett. 117, 203601 (2016)

    [19] Hoonsoo Kang, Gessler Hernandez, and Yifu Zhu, “Nonlinear wave mixing with electromagnetically induced transparency in cold atoms,” Journal of Modern Optics, 52(16):2391-2399, 2005.

    [20] W. Demtö , Laser Spectroscopy Basic Concepts and Instrumentation, Springer

    [21] Daniel Adam Steck. “Rubidium 87 D line data,” 01 2003.

    [22] Immanuel Bloch, “Ultracold quantum gases in optical lattices,” Nature Physics volume 1, pages23–30 (2005)

    [23] S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, Phys. Rev. Lett. 57, 314 (1986).

    [24] J. Dalibard and C. Cohen-Tannoudji, Opt. Soc. Am. B 6, 2023 (1989).

    [25] M. Kasevich and S. Chu, Phys. Rev. Lett. 69, 1741 (1992).

    [26] Steven Chu, L. Hollberg, J. E. Bjorkholm, Alex Cable, and A. Ashkin, ‘‘Three-Dimensional Viscous Confinement and Cooling of Atoms by Resonance Radiation Pressure,’’ Phys. Rev. Lett. 55, 48 (1985)

    下載圖示 校內:2020-07-17公開
    校外:2020-07-17公開
    QR CODE