簡易檢索 / 詳目顯示

研究生: 林剛玄
Lin, Gang-Xuan
論文名稱: 對偶方式求解雙井能量問題的廣域極值點
Dual Approach for Solving the Global minimum of the Double Well Potential Problem
指導教授: 許瑞麟
Sheu, Reuy-Lin
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系應用數學碩博士班
Department of Mathematics
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 42
中文關鍵詞: 雙井能量問題廣義 Ginzburg-Landau 泛函多項式最佳化非凸二次規劃
外文關鍵詞: Double well potential, Generalized Ginzburg-Landau functional, Polynomial optimization, Non-convex quadratic programming
相關次數: 點閱:93下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 這篇文章裡我們提出和研究的一個特殊類型的四次多變量多項式,我們稱之為雙井能量泛函問題。此問題在有下界的情形下,圖形上它將有一個非常獨特的特徵,它可能有兩個或更多個的局部極小值,且被局部極大值或鞍點分離開來。我們從廣義的 Ginzburg-Landau 泛函的數值估計開始研究與推導,並從該問題的對偶問題刻劃出全域最小解。我們證明了原問題的二次對偶問題是一個線性約束凸最小化問題,且二次對偶問題可以等價映射到原始雙井能量問題的部分(或全部)。數值例子提供了本問題的重要特徵與其二次對偶的映射。

    A special type of multi-variate polynomial of degree 4, called the double well potential problem, is proposed and studied. It has a very unique feature in the graph that two or more local minima are separated by a local maximum or a saddle point, provided the entire function is bounded from below. We begin the study by deriving the problem from a numerical estimation for the generalized Ginzburg-Landau functional, followed by the characterization for the global minimum solution from the dual. We show that the dual of the dual problem is a linearly constrained convex minimization problem, which is mapped to a portion (maybe the entire) of the original double well potential problem, although the mapping might not be one-to-one. Numerical examples are provided to see the important features of the problem and also the mapping from its dual of the dual.

    Contents 1 Introduction 1 2 Space Reduction and Format Setting 7 3 Analytic Solution to the (DWP) Problem 16 4 Dual of the Dual Problem 21 5 The Comparison with the Quadratic Programming 27 6 Numerical Examples 36 7 Conclusions and Future Researches 41 References 42

    [1] A. Ben-Tal and M. Teboulle, Hidden convexity in some nonconvex quadratically constrained quadratic programming. Mathematical Programming, 72: 51-63, 1996.
    [2] T. Bidoneau, On the Van Der Waals theory of surface tension. Markov Processes and Related Fields, 8: 319-338, 2002.
    [3] J. I. Brauman, Some historical background on the double-well potential model. Journal of Mass Spectrometry, 30: 1649-1651, 1995.
    [4] J.M. Feng, G.X. Lin, R.L. Sheu and Y. Xia, Duality and solutions for quadratic programming over single non-homogeneous quadratic constraint. Journal of Global
    Optimization, Online First, 2010.
    [5] D.Y. Gao, H. Yu, Multi-scale modelling and canonical dual nite element method in phase transitions of solids. International Journal of Solids and Structures, 45:
    3660-3673, 2008.
    [6] A. Heuer and U. Haeberlen, The dynamics of hydrogens in double well potentials: The transition of the jump rate from the low temperature quantum-mechanical to the high temperature activated regime. J. Chem. Phys., 15: (6), 4201-4214, 1991.
    [7] R. L. Jerrard, Lower bounds for generalized Ginzburg-Landau functionals. SIAM J. Math. Anal., 30: (4), 721-746, 1999.
    [8] K. Kaski, K. Binder and J. D. Gunton, A study of a coarse-gained free energy funcitonal for the three-dimensional Ising model. Journal of Physics A: Mathematical
    and General, 16: 623-627, 1983.
    [9] Y. Xia, R.L. Sheu, S.C. Fang and W. Xing, On Local Minimizers and Maximizers of Double-Well Potential Problem. Working paper.
    [10] W. Xing, S.C. Fang, D.Y. Gao, R.L. Sheu and L. Zhang, Canonical Dual Solutions to the Quadratic Programming over a Quadratic Constraint. Submitted.
    [11] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear Programming Theory and Algorithms, 3rd. Wiley Interscience, 2006.
    [12] R. Horn and C.R. Johnson, Matrix Analysis. Cambridge University Press, Cambridge, UK, 1985.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE