| 研究生: |
安拉維 Aala, Wilson Jr Florendo |
|---|---|
| 論文名稱: |
利用多體學技術探索失養型表皮溶解水皰症的免疫途徑,以促進藥物再利用和加速臨床應用 Integrated multi-omics to dissect immune pathways in dystrophic epidermolysis bullosa for drug repurposing and clinical translation |
| 指導教授: |
許 釗凱
Hsu, Chao-Kai 陳 芃潔 Chen, Peng-Chieh |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
醫學院 - 臨床醫學研究所 Institute of Clinical Medicine |
| 論文出版年: | 2024 |
| 畢業學年度: | 113 |
| 語文別: | 英文 |
| 論文頁數: | 135 |
| 中文關鍵詞: | 失養型表皮分解性水泡症 、第七型膠原蛋白 、角質細胞 、發炎 |
| 外文關鍵詞: | dystrophic epidermolysis bullosa, type VII collagen, keratinocyte, inflammation |
| 相關次數: | 點閱:40 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
失養型表皮分解性水泡症(泡泡龍)病患因帶有COL7A1基因上之突變,使皮膚表皮真皮層鍵結力下降而導致皮膚脆弱。考量到失養型泡泡龍是單基因遺傳疾病,目前多數研究致力於利用基因剪輯或/和細胞治療,讓病患能重新製造具有功能之第七型膠原蛋白。雖然這些治療方式正在發展中,臨床上卻仍有許多病患亟需及時的治療緩解其搔癢與發炎症狀,以改善生活品質。透過基因分析資訊,我們得以將老藥新用,改善病患的搔癢及全身性發炎症狀。本研究利用單細胞RNA定序及bulk RNA定序來探討COL7A1突變如何影響顯性遺傳(DDEB)及隱性遺傳(RDEB)失養型泡泡龍病患皮膚的基底層角質細胞與發炎細胞,進而找到相對應的治療標的。在基底層角質細胞部分,我們發現RDEB病患的基底層角質細胞具有第一型干擾素信號的增強,具體表現在由RDEB病患誘導性多能幹細胞分化出的角質細胞中,第一型干擾素誘導基因IFIH1和IRF7的上調,這會向單核細胞來源的巨噬細胞發出信號,促使其在皮膚中表現白血球介素-6 (IL-6)。RDEB病患血中的白血球介素-6濃度和疾病嚴重程度呈正相關(嚴重型:6.56±0.90;中等型:2.98±1.58;健康受試者: 1.55±0.79)。DDEB病患的基底層角質細胞則表現較高的S100A8及S100A9,此兩基因和皮膚駐留型T細胞(skin-resident T cell)的活化相關,特別是活化Th2細胞。透過mRNA及蛋白質的定量發現DDEB病患的皮膚同時也表現有較高的Th2細胞激素。在皮膚免疫細胞的分析中,我們發現RDEB和DDEB病患的M2-like巨噬細胞表現出相反的基因表現模式。RDEB病患的M2-like巨噬細胞缺乏M2相關基因的轉錄活化,而DDEB病患則顯示出M2相關基因程式的轉錄活化。RDEB病患皮膚中的M2-like巨噬細胞表現較低之MRC1基因,此基因和膠原蛋白的降解相關。透過以上研究結果,我們能找出臨床上合適之治療標的。在RDEB中,單核細胞來源的巨噬細胞是引發炎症的主要驅動因素,因為它們分泌IL-6。因此,使用抗IL-6或抗IL-6受體的療法(如tocilizumab)在一項病例研究和我們的初步臨床試驗中顯示出良好的效果(數據尚未報告)。DDEB病患皮膚的發炎與搔癢則是因代謝旺盛之GATA3+細胞引起,因此能透過抑制白血球介素-4/13的單株抗體,如dupilumab,達到止癢之效。臨床上,我們已成功利用dupilumab改善多位DDEB病患的搔癢情形,並促進傷口癒合。本研究不只釐清RDEB與DDEB病患搔癢及發炎的致病機轉,更找到各自合適的治療標的。
Pathogenic mutations in type VII collagen (COL7A1), which exhibit complete penetrance, cause dystrophic epidermolysis bullosa (DEB) leading to skin fragility and poor dermal-epidermal adhesion. Given DEB is a monogenic disorder, research is mostly focused on restoring functional COL7A1 in the skin by gene editing, cell therapy, or a combination of both. While development for these therapies is ongoing, treating DEB complications in patients including inflammation, itch, and pain is vital in maintaining quality of life. The current lack of treatments to target itch and inflammation in DEB can be supplemented by drug repurposing, although robust genomic data is necessary to evidence its use. In this study, we employed single-cell RNA sequencing integrated with bulk RNA expression and protein expression data to determine the impact of nonnative COL7A1 on the state of basal keratinocytes (KCBs) in dominantly-inherited (DDEB) and recessively-inherited dystrophic epidermolysis bullosa (RDEB) and how these effects are propagated to skin-resident immune cells with the goal of identifying gene or protein targets for drug repurposing. Our work on KCBs indicated that differentially expressed genes from these cells can robustly classify inflammatory skin diseases including DDEB and RDEB. We found enrichment for type I interferon signaling in RDEB KCBs, as evidenced by upregulated type I interferon-inducible genes IFIH1 and IRF7 in keratinocytes differentiated from RDEB patient-derived induced pluripotent stem cells, which signals to monocyte-derived macrophages to express interleukin (IL)-6 in the skin. Elevated IL-6 (normalized protein expression) was also found to be associated with severe RDEB sera (6.56±0.90) whereas intermediate RDEB (2.98±1.58) and healthy (1.55±0.79) sera have comparably low levels for this cytokine. In DDEB KCBs, we found significant upregulation of S100A8 and S100A9 which act as damage-associated molecule pattern factors which activated skin-resident T cells, primarily helper T (Th) type 2 cells. This was evidenced by significant upregulation of Th2 cytokines at both the mRNA and protein levels in DDEB skin. Our analysis of immune cell populations also revealed opposing signatures only for M2-like macrophages from RDEB and DDEB skin with the former lacking transcriptional activation of M2-associated gene programs. RDEB M2-like macrophages were also found to have repressed expression of the mannose receptor C type-1 (MRC1) which is responsible for fragmented collagen recognition and degradation. From these, we were able to identify therapeutic targets for drug repurposing. In RDEB, where monocyte-derived macrophages act as the primary driver of inflammation by expressing IL6, the use of anti-IL6 or anti-IL6 receptor (e.g. tocilizumab) has shown promising results in one case study and in our preliminary clinical trial (data unreported). In DDEB, we implicated metabolically active GATA3+ cells to be responsible for itch and inflammation in affected skin, and treatment with the anti-IL4/IL13 signaling drug dupilumab showed significant relief from itch and improved wound healing. Our results have not only provided therapeutic targets for treating DEB-associated complications but have also contributed to the understanding of the pathobiology of itch and inflammation in DDEB and RDEB.
1. Aala WJF, Hou PC, Hong YK et al. Dominant dystrophic epidermolysis bullosa is associated with glycolytically active GATA3+ Th2 cells which may contribute to pruritus in lesional skin. Br J Dermatol 191: 252-60 (2024).
2. Abahussein AA, al-Zayir AA, Mostafa WZ et al. Epidermolysis bullosa in the eastern province of Saudi Arabia. Int J Dermatol 32(8): 579-81 (1993).
3. Abdelaziz MH, Abdelwahab SF, Wan J et al. Alternatively activated macrophages; a double-edged sword in allergic asthma. J Transl Med 18(1): 58 (2020).
4. Abtin A, Jain R, Mitchell AJ et al. Perivascular macrophages mediate neutrophil recruitment during bacterial skin infection. Nat Immunol 15(1): 45-53 (2014).
5. Abu Sa'd J, Indelman M, Pfendner E et al. Molecular epidemiology of hereditary epidermolysis bullosa in a Middle Eastern population. J Invest Dermatol 126(4): 777-81 (2006).
6. Akasaka E, Nakano H, Sawamura D. Availability of mRNA Obtained from Peripheral Blood Mononuclear Cells for Testing Mutation Consequences in Dystrophic Epidermolysis Bullosa. Int J Mol Sci 22(24): (2021).
7. Akasaka E, Nakano H, Sawamura D. Two cases of the intermediate phenotype of recessive dystrophic epidermolysis bullosa harboring the novel COL7A1 mutation c.3570G>A. J Dermatol Sci 106(3): 193-5 (2022).
8. Aleemardani M, Trikic MZ, Green NH et al. The Importance of Mimicking Dermal-Epidermal Junction for Skin Tissue Engineering: A Review. Bioengineering (Basel) 8(11): (2021).
9. Alkon N, Assen FP, Arnoldner T et al. Single-cell RNA sequencing defines disease-specific differences between chronic nodular prurigo and atopic dermatitis. J Allergy Clin Immunol 152(2): 420-35 (2023).
10. Almaani N, Liu L, Dopping-Hepenstal PJ et al. Identical glycine substitution mutations in type VII collagen may underlie both dominant and recessive forms of dystrophic epidermolysis bullosa. Acta Derm Venereol 91(3): 262-6 (2011).
11. Almagro Armenteros JJ, Salvatore M, Emanuelsson O et al. Detecting sequence signals in targeting peptides using deep learning. Life Sci Alliance 2(5): (2019).
12. Almeida L, Dhillon-LaBrooy A, Carriche G et al. CD4(+) T-cell differentiation and function: Unifying glycolysis, fatty acid oxidation, polyamines NAD mitochondria. J Allergy Clin Immunol 148(1): 16-32 (2021).
13. Almeida L, Lochner M, Berod L et al. Metabolic pathways in T cell activation and lineage differentiation. Semin Immunol 28(5): 514-24 (2016).
14. Almughrbi AH, Crovella S. Molecular analysis of inflammatory diseases. Exp Dermatol 31 Suppl 1: 9-16 (2022).
15. Alquicira-Hernandez J, Powell JE. Nebulosa recovers single cell gene expression signals by kernel density estimation. Bioinformatics: (2021).
16. Andersson AM, Ingham AC, Edslev SM et al. Ethnic endotypes in paediatric atopic dermatitis depend on immunotype, lipid composition and microbiota of the skin. J Eur Acad Dermatol Venereol 38(2): 365-74 (2024).
17. Aran D, Looney AP, Liu L et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat Immunol 20(2): 163-72 (2019).
18. Atanasova VS, Jiang Q, Prisco M et al. Amlexanox Enhances Premature Termination Codon Read-Through in COL7A1 and Expression of Full Length Type VII Collagen: Potential Therapy for Recessive Dystrophic Epidermolysis Bullosa. J Invest Dermatol 137(9): 1842-9 (2017).
19. Baardman R, Yenamandra VK, Duipmans JC et al. Novel insights into the epidemiology of epidermolysis bullosa (EB) from the Dutch EB Registry: EB more common than previously assumed? J Eur Acad Dermatol Venereol 35(4): 995-1006 (2021).
20. Barbieri JS, Wanat K, Seykora J. Skin: Basic Structure and Function. In: Pathobiology of Human Disease (McManus LM, Mitchell RN, eds). San Diego: Academic Press. 2014; 1134-44.
21. Bardhan A, Bruckner-Tuderman L, Chapple I et al. Epidermolysis bullosa. Nature Reviews Disease Primers 6(78): (2020).
22. Bardhan A, Bruckner-Tuderman L, Chapple ILC et al. Epidermolysis bullosa. Nat Rev Dis Primers 6(1): 78 (2020).
23. Bedoui S, Whitney PG, Waithman J et al. Cross-presentation of viral and self antigens by skin-derived CD103+ dendritic cells. Nat Immunol 10(5): 488-95 (2009).
24. Beele H, Naeyaert JM, Monstrey S et al. Ulcers in pretibial epidermolysis bullosa. Grafting with autologous meshed split-thickness skin and allogeneic cultured keratinocytes. Arch Dermatol 131(9): 990-2 (1995).
25. Ben Brick AS, Laroussi N, Mesrati H et al. Mutational founder effect in recessive dystrophic epidermolysis bullosa families from Southern Tunisia. Arch Dermatol Res 306(4): 405-11 (2014).
26. Bernstein EF, Chen YQ, Kopp JB et al. Long-term sun exposure alters the collagen of the papillary dermis. Comparison of sun-protected and photoaged skin by northern analysis, immunohistochemical staining, and confocal laser scanning microscopy. J Am Acad Dermatol 34(2 Pt 1): 209-18 (1996).
27. Betts CM, Posteraro P, Costa AM et al. Pretibial dystrophic epidermolysis bullosa: a recessively inherited COL7A1 splice site mutation affecting procollagen VII processing. Br J Dermatol 141(5): 833-9 (1999).
28. Biggs LC, Kim CS, Miroshnikova YA et al. Mechanical Forces in the Skin: Roles in Tissue Architecture, Stability, and Function. J Invest Dermatol 140(2): 284-90 (2020).
29. Bonafont J, Mencia A, Garcia M et al. Clinically Relevant Correction of Recessive Dystrophic Epidermolysis Bullosa by Dual sgRNA CRISPR/Cas9-Mediated Gene Editing. Mol Ther 27(5): 986-98 (2019).
30. Borcherding N, Vishwakarma A, Voigt AP et al. Mapping the immune environment in clear cell renal carcinoma by single-cell genomics. Commun Biol 4(1): 122 (2021).
31. Bouland GA, Mahfouz A, Reinders MJT. Consequences and opportunities arising due to sparser single-cell RNA-seq datasets. Genome Biol 24(1): 86 (2023).
32. Braverman IM. The cutaneous microcirculation: ultrastructure and microanatomical organization. Microcirculation 4(3): 329-40 (1997).
33. Breitenbach JS, Rinnerthaler M, Trost A et al. Transcriptome and ultrastructural changes in dystrophic Epidermolysis bullosa resemble skin aging. Aging (Albany NY) 7(6): 389-411 (2015).
34. Bremer J, Bornert O, Nystrom A et al. Antisense Oligonucleotide-mediated Exon Skipping as a Systemic Therapeutic Approach for Recessive Dystrophic Epidermolysis Bullosa. Mol Ther Nucleic Acids 5(10): e379 (2016).
35. Bremer J, van der Heijden EH, Eichhorn DS et al. Natural Exon Skipping Sets the Stage for Exon Skipping as Therapy for Dystrophic Epidermolysis Bullosa. Mol Ther Nucleic Acids 18: 465-75 (2019).
36. Bruckner AL, Losow M, Wisk J et al. The challenges of living with and managing epidermolysis bullosa: insights from patients and caregivers. Orphanet J Rare Dis 15(1): 1 (2020).
37. Buccitelli C, Selbach M. mRNAs, proteins and the emerging principles of gene expression control. Nat Rev Genet 21(10): 630-44 (2020).
38. Butt MH, Zaman M, Ahmad A et al. Appraisal for the Potential of Viral and Nonviral Vectors in Gene Therapy: A Review. Genes (Basel) 13(8): (2022).
39. Campbell DJ, Butcher EC. Rapid acquisition of tissue-specific homing phenotypes by CD4(+) T cells activated in cutaneous or mucosal lymphoid tissues. J Exp Med 195(1): 135-41 (2002).
40. Campbell ID, Humphries MJ. Integrin structure, activation, and interactions. Cold Spring Harb Perspect Biol 3(3): (2011).
41. Cano-Gamez E, Soskic B, Roumeliotis TI et al. Single-cell transcriptomics identifies an effectorness gradient shaping the response of CD4(+) T cells to cytokines. Nat Commun 11(1): 1801 (2020).
42. Carman LE, Samulevich ML, Aneskievich BJ. Repressive Control of Keratinocyte Cytoplasmic Inflammatory Signaling. Int J Mol Sci 24(15): (2023).
43. Caroppo F, Milan E, Giulioni E et al. A case of dystrophic epidermolysis bullosa pruriginosa treated with dupilumab. J Eur Acad Dermatol Venereol 36(5): e365-e7 (2022).
44. Carpen L, Falvo P, Orecchioni S et al. A single-cell transcriptomic landscape of innate and adaptive intratumoral immunity in triple negative breast cancer during chemo- and immunotherapies. Cell Death Discov 8(1): 106 (2022).
45. Cassioli C, Baldari CT. The Expanding Arsenal of Cytotoxic T Cells. Front Immunol 13: 883010 (2022).
46. Castillo RL, Sidhu I, Dolgalev I et al. Spatial transcriptomics stratifies psoriatic disease severity by emergent cellular ecosystems. Sci Immunol 8(84): eabq7991 (2023).
47. Chakarov S, Lim HY, Tan L et al. Two distinct interstitial macrophage populations coexist across tissues in specific subtissular niches. Science 363(6432): (2019).
48. Chan FL, Inoue S. Lamina lucida of basement membrane: an artefact. Microsc Res Tech 28(1): 48-59 (1994).
49. Chen F, Wei R, Deng D et al. Genotype and phenotype correlations in 441 patients with epidermolysis bullosa from China. J Eur Acad Dermatol Venereol 37(2): 411-9 (2023).
50. Chen M, Kasahara N, Keene DR et al. Restoration of type VII collagen expression and function in dystrophic epidermolysis bullosa. Nat Genet 32(4): 670-5 (2002).
51. Choudhary S, Satija R. Comparison and evaluation of statistical error models for scRNA-seq. Genome Biol 23(1): 27 (2022).
52. Christiano AM, Anhalt G, Gibbons S et al. Premature termination codons in the type VII collagen gene (COL7A1) underlie severe, mutilating recessive dystrophic epidermolysis bullosa. Genomics 21(1): 160-8 (1994).
53. Christiano AM, D'Alessio M, Paradisi M et al. A common insertion mutation in COL7A1 in two Italian families with recessive dystrophic epidermolysis bullosa. J Invest Dermatol 106(4): 679-84 (1996).
54. Christiano AM, Hoffman GG, Chung-Honet LC et al. Structural Organization of the Human Type VII Collagen Gene (COL7A1), Composed of More Exons Than Any Previously Characterized Gene. Genomics 21(1): 169-79 (1994).
55. Christiano AM, McGrath JA, Tan KC et al. Glycine substitutions in the triple-helical region of type VII collagen result in a spectrum of dystrophic epidermolysis bullosa phenotypes and patterns of inheritance. Am J Hum Genet 58(4): 671-81 (1996).
56. Christiano AM, Rosenbaum LM, Chung-Honet LC et al. The large non-collagenous domain (NC-1) of type VII collagen is amino-terminal and chimeric. Homology to cartilage matrix protein, the type III domains of fibronectin and the A domains of von Willebrand factor. Hum Mol Genet 1(7): 475-81 (1992).
57. Christiano AM, Ryynanen M, Uitto J. Dominant dystrophic epidermolysis bullosa: identification of a Gly-->Ser substitution in the triple-helical domain of type VII collagen. Proc Natl Acad Sci U S A 91(9): 3549-53 (1994).
58. Christiano AM, Suga Y, Greenspan DS et al. Premature termination codons on both alleles of the type VII collagen gene (COL7A1) in three brothers with recessive dystrophic epidermolysis bullosa. J Clin Invest 95(3): 1328-34 (1995).
59. Chu T, Wang Z, Pe'er D et al. Cell type and gene expression deconvolution with BayesPrism enables Bayesian integrative analysis across bulk and single-cell RNA sequencing in oncology. Nat Cancer 3(4): 505-17 (2022).
60. Chung BM, Arutyunov A, Ilagan E et al. Regulation of C-X-C chemokine gene expression by keratin 17 and hnRNP K in skin tumor keratinocytes. J Cell Biol 208(5): 613-27 (2015).
61. Chung HJ, Uitto J. Type VII collagen: the anchoring fibril protein at fault in dystrophic epidermolysis bullosa. Dermatol Clin 28(1): 93-105 (2010).
62. Cianfarani F, Zambruno G, Castiglia D et al. Pathomechanisms of Altered Wound Healing in Recessive Dystrophic Epidermolysis Bullosa. Am J Pathol 187(7): 1445-53 (2017).
63. Clawson RC, Duran SF, Pariser RJ. Epidermolysis bullosa pruriginosa responding to dupilumab. JAAD Case Rep 16: 69-71 (2021).
64. Cockrell AS, Kafri T. Gene delivery by lentivirus vectors. Mol Biotechnol 36(3): 184-204 (2007).
65. Cogan J, Weinstein J, Wang X et al. Aminoglycosides restore full-length type VII collagen by overcoming premature termination codons: therapeutic implications for dystrophic epidermolysis bullosa. Mol Ther 22(10): 1741-52 (2014).
66. Cohen I, Birnbaum RY, Leibson K et al. ZNF750 is expressed in differentiated keratinocytes and regulates epidermal late differentiation genes. PLoS One 7(8): e42628 (2012).
67. Cohen JN, Bowman S, Laszik ZG et al. Clinicopathologic overlap of psoriasis, eczema, and psoriasiform dermatoses: A retrospective study of T helper type 2 and 17 subsets, interleukin 36, and beta-defensin 2 in spongiotic psoriasiform dermatitis, sebopsoriasis, and tumor necrosis factor alpha inhibitor-associated dermatitis. J Am Acad Dermatol 82(2): 430-9 (2020).
68. Colombo M, Brittingham RJ, Klement JF et al. Procollagen VII self-assembly depends on site-specific interactions and is promoted by cleavage of the NC2 domain with procollagen C-proteinase. Biochemistry 42(39): 11434-42 (2003).
69. Cong L, Ran FA, Cox D et al. Multiplex Genome Engineering Using CRISPR/Cas Systems. Science 339(6121): 819-23 (2013).
70. Conget P, Rodriguez F, Kramer S et al. Replenishment of type VII collagen and re-epithelialization of chronically ulcerated skin after intradermal administration of allogeneic mesenchymal stromal cells in two patients with recessive dystrophic epidermolysis bullosa. Cytotherapy 12(3): 429-31 (2010).
71. Cosmi L, Maggi L, Santarlasci V et al. Identification of a novel subset of human circulating memory CD4(+) T cells that produce both IL-17A and IL-4. J Allergy Clin Immunol 125(1): 222-30 e1-4 (2010).
72. Costa L, Caso F, Cantarini L et al. Efficacy of tocilizumab in a patient with refractory psoriatic arthritis. Clin Rheumatol 33(9): 1355-7 (2014).
73. Coulombe PA, Lee CH. Defining keratin protein function in skin epithelia: epidermolysis bullosa simplex and its aftermath. J Invest Dermatol 132(3 Pt 2): 763-75 (2012).
74. CRIKELAIR GF, HOEHN RJ, DOMONKOS AN et al. SKIN HOMOGRAFTS IN EPIDERMOLYSIS BULLOSA DYSTROPHICA: Case Report. Plastic and Reconstructive Surgery 46(1): 89-92 (1970).
75. Cumberbatch M, Dearman RJ, Griffiths CE et al. Langerhans cell migration. Clin Exp Dermatol 25(5): 413-8 (2000).
76. Dajnoki Z, Somogyi O, Medgyesi B et al. Primary alterations during the development of hidradenitis suppurativa. J Eur Acad Dermatol Venereol 36(3): 462-71 (2022).
77. Danescu S, Has C, Senila S et al. Epidemiology of inherited epidermolysis bullosa in Romania and genotype-phenotype correlations in patients with dystrophic epidermolysis bullosa. J Eur Acad Dermatol Venereol 29(5): 899-903 (2015).
78. Dang N, Murrell DF. Mutation analysis and characterization of COL7A1 mutations in dystrophic epidermolysis bullosa. Exp Dermatol 17(7): 553-68 (2008).
79. Darbord D, Hickman G, Pironon N et al. Dystrophic epidermolysis bullosa pruriginosa: a new case series of a rare phenotype unveils skewed Th2 immunity. J Eur Acad Dermatol Venereol 36(1): 133-43 (2022).
80. de Koning HD, Rodijk-Olthuis D, van Vlijmen-Willems IM et al. A comprehensive analysis of pattern recognition receptors in normal and inflamed human epidermis: upregulation of dectin-1 in psoriasis. J Invest Dermatol 130(11): 2611-20 (2010).
81. Deng CC, Hu YF, Zhu DH et al. Single-cell RNA-seq reveals fibroblast heterogeneity and increased mesenchymal fibroblasts in human fibrotic skin diseases. Nat Commun 12(1): 3709 (2021).
82. Desfarges S, Ciuffi A. Viral Integration and Consequences on Host Gene Expression. Viruses: Essential Agents of Life: 147-75 (2012).
83. Dieter K, Niebergall-Roth E, Daniele C et al. ABCB5(+) mesenchymal stromal cells facilitate complete and durable wound closure in recessive dystrophic epidermolysis bullosa. Cytotherapy 25(7): 782-8 (2023).
84. Direder M, Wielscher M, Weiss T et al. The transcriptional profile of keloidal Schwann cells. Exp Mol Med 54(11): 1886-900 (2022).
85. Doolan BJ, McGrath JA, Mellerio JE. Beremagene geperpavec (B-VEC) gene therapy for the treatment of cutaneous wounds in patients with dystrophic epidermolysis bullosa: a critically appraised research paper. Br J Dermatol 190(3): 340-2 (2024).
86. Dorschner RA, Pestonjamasp VK, Tamakuwala S et al. Cutaneous injury induces the release of cathelicidin anti-microbial peptides active against group A Streptococcus. J Invest Dermatol 117(1): 91-7 (2001).
87. Driskell RR, Lichtenberger BM, Hoste E et al. Distinct fibroblast lineages determine dermal architecture in skin development and repair. Nature 504(7479): 277-81 (2013).
88. du Rand A, Hunt J, Samson C et al. Highly efficient CRISPR/Cas9-mediated exon skipping for recessive dystrophic epidermolysis bullosa. Bioeng Transl Med 9(4): e10640 (2024).
89. Dubin C, Glickman JW, Del Duca E et al. Scalp and serum profiling of frontal fibrosing alopecia reveals scalp immune and fibrosis dysregulation with no systemic involvement. J Am Acad Dermatol 86(3): 551-62 (2022).
90. Eckert RL, Broome AM, Ruse M et al. S100 proteins in the epidermis. J Invest Dermatol 123(1): 23-33 (2004).
91. Edmondson SR, Thumiger SP, Werther GA et al. Epidermal homeostasis: the role of the growth hormone and insulin-like growth factor systems. Endocr Rev 24(6): 737-64 (2003).
92. Eichstadt S, Barriga M, Ponakala A et al. Phase 1/2a clinical trial of gene-corrected autologous cell therapy for recessive dystrophic epidermolysis bullosa. JCI Insight 4(19): (2019).
93. El-Darouti M, Fawzy M, Amin I et al. Treatment of dystrophic epidermolysis bullosa with bone marrow non-hematopoeitic stem cells: a randomized controlled trial. Dermatol Ther 29(2): 96-100 (2016).
94. Ellis SJ, Gomez NC, Levorse J et al. Distinct modes of cell competition shape mammalian tissue morphogenesis. Nature 569(7757): 497-502 (2019).
95. Escamez MJ, Garcia M, Cuadrado-Corrales N et al. The first COL7A1 mutation survey in a large Spanish dystrophic epidermolysis bullosa cohort: c.6527insC disclosed as an unusually recurrent mutation. Br J Dermatol 163(1): 155-61 (2010).
96. Esposito S, Guez S, Orenti A et al. Autoimmunity and Cytokine Imbalance in Inherited Epidermolysis Bullosa. Int J Mol Sci 17(10): (2016).
97. Facheris P, Jeffery J, Del Duca E et al. The translational revolution in atopic dermatitis: the paradigm shift from pathogenesis to treatment. Cell Mol Immunol 20(5): 448-74 (2023).
98. Feinberg H, Jegouzo SAF, Lasanajak Y et al. Structural analysis of carbohydrate binding by the macrophage mannose receptor CD206. J Biol Chem 296: 100368 (2021).
99. Feinstein JA, Bruckner AL, Chastek B et al. Clinical characteristics, healthcare use, and annual costs among patients with dystrophic epidermolysis bullosa. Orphanet J Rare Dis 17(1): 367 (2022).
100. Feinstein JA, Jambal P, Peoples K et al. Assessment of the Timing of Milestone Clinical Events in Patients With Epidermolysis Bullosa From North America. JAMA Dermatol 155(2): 196-203 (2019).
101. Feng X, Zhang H, Margolick JB et al. Keratin intracellular concentration revisited: implications for keratin function in surface epithelia. J Invest Dermatol 133(3): 850-3 (2013).
102. Finak G, McDavid A, Yajima M et al. MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol 16: 278 (2015).
103. Fine JD. Epidemiology of Inherited Epidermolysis Bullosa Based on Incidence and Prevalence Estimates From the National Epidermolysis Bullosa Registry. JAMA Dermatol 152(11): 1231-8 (2016).
104. Finlay AY, Khan GK. Dermatology Life Quality Index (DLQI)--a simple practical measure for routine clinical use. Clin Exp Dermatol 19(3): 210-6 (1994).
105. Fortuna G, Pollio A, Aria M et al. Genotype-oropharyngeal phenotype correlation in Mexican patients with dystrophic epidermolysis bullosa. Int J Oral Maxillofac Surg 43(4): 491-7 (2014).
106. Foster DS, Januszyk M, Yost KE et al. Integrated spatial multiomics reveals fibroblast fate during tissue repair. Proc Natl Acad Sci U S A 118(41): (2021).
107. Freeman SC, Sonthalia S. Histology, Keratohyalin Granules. In: StatPearls. Treasure Island (FL). 2024.
108. Fritsch A, Loeckermann S, Kern JS et al. A hypomorphic mouse model of dystrophic epidermolysis bullosa reveals mechanisms of disease and response to fibroblast therapy. J Clin Invest 118(5): 1669-79 (2008).
109. Fritz Y, Klenotic PA, Swindell WR et al. Induction of Alternative Proinflammatory Cytokines Accounts for Sustained Psoriasiform Skin Inflammation in IL-17C+IL-6KO Mice. J Invest Dermatol 137(3): 696-705 (2017).
110. Fuchs E, Raghavan S. Getting under the skin of epidermal morphogenesis. Nat Rev Genet 3(3): 199-209 (2002).
111. Furue M, Ando I, Inoue Y et al. Pretibial epidermolysis bullosa. Successful therapy with a skin graft. Arch Dermatol 122(3): 310-3 (1986).
112. Galehdari H, Mohammadian G, Azmoon S et al. A novel COL7A1 gene mutation in an Iranian individual suffering dystrophic epidermolysis bullosa. J Mol Diagn 12(3): 377-9 (2010).
113. Galli SJ, Borregaard N, Wynn TA. Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils. Nat Immunol 12(11): 1035-44 (2011).
114. Ganier C, Titeux M, Gaucher S et al. Intradermal Injection of Bone Marrow Mesenchymal Stromal Cells Corrects Recessive Dystrophic Epidermolysis Bullosa in a Xenograft Model. J Invest Dermatol 138(11): 2483-6 (2018).
115. Gao Y, Gong B, Chen Z et al. Damage-Associated Molecular Patterns, a Class of Potential Psoriasis Drug Targets. Int J Mol Sci 25(2): (2024).
116. Garcia-Mesa Y, Garcia-Piqueras J, Cobo R et al. Sensory innervation of the human male prepuce: Meissner's corpuscles predominate. J Anat 239(4): 892-902 (2021).
117. Gasiunas G, Barrangou R, Horvath P et al. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A 109(39): E2579-86 (2012).
118. Germann C, Sutter R, Nanz D. Novel observations of Pacinian corpuscle distribution in the hands and feet based on high-resolution 7-T MRI in healthy volunteers. Skeletal Radiol 50(6): 1249-55 (2021).
119. Geyer SH, Nohammer MM, Tinhofer IE et al. The dermal arteries of the human thumb pad. J Anat 223(6): 603-9 (2013).
120. Gilmour J, Lavender P. Control of IL-4 expression in T helper 1 and 2 cells. Immunology 124(4): 437-44 (2008).
121. Gogiel T, Bankowski E. [New collagenous proteins: FACIT collagens, transmembrane collagens and multiplexins]. Postepy Hig Med Dosw 55(1): 133-56 (2001).
122. Goh G, Choi M. Application of whole exome sequencing to identify disease-causing variants in inherited human diseases. Genomics Inform 10(4): 214-9 (2012).
123. Goletz S, Zillikens D, Schmidt E. Structural proteins of the dermal-epidermal junction targeted by autoantibodies in pemphigoid diseases. Exp Dermatol 26(12): 1154-62 (2017).
124. Goleva E, Berdyshev E, Leung DY. Epithelial barrier repair and prevention of allergy. J Clin Invest 129(4): 1463-74 (2019).
125. Gonzalez-Hidalgo C, De Haro J, Bleda S et al. Differential mRNA expression of inflammasome genes NLRP1 and NLRP3 in abdominal aneurysmal and occlusive aortic disease. Ther Adv Cardiovasc Dis 12(4): 123-9 (2018).
126. Goto M, Sawamura D, Nishie W et al. Targeted skipping of a single exon harboring a premature termination codon mutation: implications and potential for gene correction therapy for selective dystrophic epidermolysis bullosa patients. J Invest Dermatol 126(12): 2614-20 (2006).
127. Gray SM, Kaech SM, Staron MM. The interface between transcriptional and epigenetic control of effector and memory CD8(+) T-cell differentiation. Immunol Rev 261(1): 157-68 (2014).
128. Gregorio J, Meller S, Conrad C et al. Plasmacytoid dendritic cells sense skin injury and promote wound healing through type I interferons. J Exp Med 207(13): 2921-30 (2010).
129. Guilliams M, Thierry GR, Bonnardel J et al. Establishment and Maintenance of the Macrophage Niche. Immunity 52(3): 434-51 (2020).
130. Gurevich I, Agarwal P, Zhang P et al. In vivo topical gene therapy for recessive dystrophic epidermolysis bullosa: a phase 1 and 2 trial. Nat Med 28(4): 780-8 (2022).
131. Gurkan C, Stagg SM, Lapointe P et al. The COPII cage: unifying principles of vesicle coat assembly. Nat Rev Mol Cell Biol 7(10): 727-38 (2006).
132. Haase I, Evans R, Pofahl R et al. Regulation of keratinocyte shape, migration and wound epithelialization by IGF-1- and EGF-dependent signalling pathways. J Cell Sci 116(Pt 15): 3227-38 (2003).
133. Hafemeister C, Satija R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol 20(1): 296 (2019).
134. Haines BM. Junction of the epidermis and dermis. Nature 181(4607): 485-6 (1958).
135. Hakimi M, North JP, Taylor MA et al. Transcriptomics aids differentiation of IL-23 overactivity in a patient with atypical skin and joint disease. Lancet 401(10385): 1381 (2023).
136. Haniffa M, Shin A, Bigley V et al. Human tissues contain CD141hi cross-presenting dendritic cells with functional homology to mouse CD103+ nonlymphoid dendritic cells. Immunity 37(1): 60-73 (2012).
137. Hao Y, Hao S, Andersen-Nissen E et al. Integrated analysis of multimodal single-cell data. Cell 184(13): 3573-87 e29 (2021).
138. Hao Y, Stuart T, Kowalski MH et al. Dictionary learning for integrative, multimodal and scalable single-cell analysis. Nat Biotechnol 42(2): 293-304 (2024).
139. Harricharan S, Richard ME, Roman J et al. PSS7 The Economic and Humanistic Burden of Dystrophic Epidermolysis Bullosa (DEB): A Systematic Literature Review. Value in Health 24: S221 (2021).
140. Harrington CA, Fei SS, Minnier J et al. RNA-Seq of human whole blood: Evaluation of globin RNA depletion on Ribo-Zero library method. Scientific Reports 10(1): 6271 (2020).
141. Has C, Amber KT, Murrell DF et al. Editorial: Skin Blistering Diseases. Front Med (Lausanne) 6: 60 (2019).
142. Has C, Bauer JW, Bodemer C et al. Consensus reclassification of inherited epidermolysis bullosa and other disorders with skin fragility. Br J Dermatol 183(4): 614-27 (2020).
143. Has C, Fischer J. Inherited epidermolysis bullosa: New diagnostics and new clinical phenotypes. Exp Dermatol 28(10): 1146-52 (2019).
144. Hasselhof V, Sperling A, Buttler K et al. Morphological and Molecular Characterization of Human Dermal Lymphatic Collectors. PLoS One 11(10): e0164964 (2016).
145. Hayday A, Theodoridis E, Ramsburg E et al. Intraepithelial lymphocytes: exploring the Third Way in immunology. Nat Immunol 2(11): 997-1003 (2001).
146. He H, Olesen CM, Pavel AB et al. Tape-Strip Proteomic Profiling of Atopic Dermatitis on Dupilumab Identifies Minimally Invasive Biomarkers. Front Immunol 11: 1768 (2020).
147. He H, Suryawanshi H, Morozov P et al. Single-cell transcriptome analysis of human skin identifies novel fibroblast subpopulation and enrichment of immune subsets in atopic dermatitis. J Allergy Clin Immunol 145(6): 1615-28 (2020).
148. Health Promotion Administration MoHaW. Statistical Report of Rare Disease Confirmed Cases in Taiwan, JUL, 2024. Taipei: Health Promotion Administration; 2024. Available from: https://www.hpa.gov.tw/EngPages/Detail.aspx?nodeid=4811&pid=18341.
149. Hebert DN, Molinari M. In and out of the ER: protein folding, quality control, degradation, and related human diseases. Physiol Rev 87(4): 1377-408 (2007).
150. Henri S, Poulin LF, Tamoutounour S et al. CD207+ CD103+ dermal dendritic cells cross-present keratinocyte-derived antigens irrespective of the presence of Langerhans cells. J Exp Med 207(1): 189-206 (2010).
151. Hernandez-Martin A, Aranegui B, Escamez MJ et al. Prevalence of dystrophic epidermolysis bullosa in Spain: a population-based study using the 3-source capture-recapture method. Evidence of a need for improvement in care. Actas Dermosifiliogr 104(10): 890-6 (2013).
152. Hertweck A, Evans CM, Eskandarpour M et al. T-bet Activates Th1 Genes through Mediator and the Super Elongation Complex. Cell Rep 15(12): 2756-70 (2016).
153. Hoeffel G, Ginhoux F. Fetal monocytes and the origins of tissue-resident macrophages. Cell Immunol 330: 5-15 (2018).
154. Hoeksema MA, Glass CK. Nature and nurture of tissue-specific macrophage phenotypes. Atherosclerosis 281: 159-67 (2019).
155. Hogervorst F, Kuikman I, von dem Borne AE et al. Cloning and sequence analysis of beta-4 cDNA: an integrin subunit that contains a unique 118 kd cytoplasmic domain. EMBO J 9(3): 765-70 (1990).
156. Homey B, Alenius H, Muller A et al. CCL27-CCR10 interactions regulate T cell-mediated skin inflammation. Nat Med 8(2): 157-65 (2002).
157. Hopkinson SB, Hamill KJ, Wu Y et al. Focal Contact and Hemidesmosomal Proteins in Keratinocyte Migration and Wound Repair. Adv Wound Care (New Rochelle) 3(3): 247-63 (2014).
158. Hori S. FOXP3 as a master regulator of T(reg) cells. Nat Rev Immunol 21(10): 618-9 (2021).
159. Horn HM, Priestley GC, Eady RA et al. The prevalence of epidermolysis bullosa in Scotland. Br J Dermatol 136(4): 560-4 (1997).
160. Houser AE, Kazmi A, Nair AK et al. The Use of Single-Cell RNA-Sequencing and Spatial Transcriptomics in Understanding the Pathogenesis and Treatment of Skin Diseases. JID Innov 3(4): 100198 (2023).
161. Hovnanian A, Hilal L, Blanchet-Bardon C et al. Recurrent nonsense mutations within the type VII collagen gene in patients with severe recessive dystrophic epidermolysis bullosa. Am J Hum Genet 55(2): 289-96 (1994).
162. Howarth JL, Lee YB, Uney JB. Using viral vectors as gene transfer tools (Cell Biology and Toxicology Special Issue: ETCS-UK 1 day meeting on genetic manipulation of cells). Cell Biol Toxicol 26(1): 1-20 (2010).
163. Hu M, Pyatilova P, Altrichter S et al. In the skin lesions of patients with mycosis fungoides, the number of MRGPRX2-expressing cells is increased and correlates with mast cell numbers. Front Immunol 14: 1197821 (2023).
164. Hume DA, Irvine KM, Pridans C. The Mononuclear Phagocyte System: The Relationship between Monocytes and Macrophages. Trends Immunol 40(2): 98-112 (2019).
165. Inaba Y, Kitamura K, Ogawa H et al. [A study on the estimation of prevalence of epidermolysis bullosa in Japan]. Nihon Hifuka Gakkai Zasshi 99(9): 1021-6 (1989).
166. Iriyama S, Matsunaga Y, Takahashi K et al. Activation of heparanase by ultraviolet B irradiation leads to functional loss of basement membrane at the dermal-epidermal junction in human skin. Arch Dermatol Res 303(4): 253-61 (2011).
167. Irvin C, Zafar I, Good J et al. Increased frequency of dual-positive TH2/TH17 cells in bronchoalveolar lavage fluid characterizes a population of patients with severe asthma. J Allergy Clin Immunol 134(5): 1175-86 e7 (2014).
168. Isaacs M, Veerkamp P, Somani AK. Small Intestinal Submucosa Matrix as a Novel Therapy for Wounds in Dystrophic Epidermolysis Bullosa. Dermatol Surg 45(6): 863-4 (2019).
169. Ishida-Yamamoto A, Iizuka H. Structural organization of cornified cell envelopes and alterations in inherited skin disorders. Exp Dermatol 7(1): 1-10 (1998).
170. Ivanov, II, Zhou L, Littman DR. Transcriptional regulation of Th17 cell differentiation. Semin Immunol 19(6): 409-17 (2007).
171. Izaguirre A, Barnes BJ, Amrute S et al. Comparative analysis of IRF and IFN-alpha expression in human plasmacytoid and monocyte-derived dendritic cells. J Leukoc Biol 74(6): 1125-38 (2003).
172. Izzi V, Heljasvaara R, Heikkinen A et al. Exploring the roles of MACIT and multiplexin collagens in stem cells and cancer. Semin Cancer Biol 62: 134-48 (2020).
173. Jeffs E, Pillay E, Ledwaba-Chapman L et al. Costs of UK community care for individuals with recessive dystrophic epidermolysis bullosa: Findings of the Prospective Epidermolysis Bullosa Longitudinal Evaluation Study. Skin Health Dis 4(1): e314 (2024).
174. Jenner RG, Townsend MJ, Jackson I et al. The transcription factors T-bet and GATA-3 control alternative pathways of T-cell differentiation through a shared set of target genes. Proc Natl Acad Sci U S A 106(42): 17876-81 (2009).
175. Jiang L, Wang M, Lin S et al. A Quantitative Proteome Map of the Human Body. Cell 183(1): 269-83 e19 (2020).
176. Jiang W, Bu D, Yang Y et al. A novel splice site mutation in collagen type VII gene in a Chinese family with dominant dystrophic epidermolysis bullosa pruriginosa. Acta Derm Venereol 82(3): 187-91 (2002).
177. Jiang Y, Tsoi LC, Billi AC et al. Cytokinocytes: the diverse contribution of keratinocytes to immune responses in skin. JCI Insight 5(20): (2020).
178. Jiang Y, Wang X, Dong C. Molecular mechanisms of T helper 17 cell differentiation: Emerging roles for transcription cofactors. Adv Immunol 144: 121-53 (2019).
179. Jinek M, Chylinski K, Fonfara I et al. A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity. Science 337(6096): 816-21 (2012).
180. Jones PH, Harper S, Watt FM. Stem cell patterning and fate in human epidermis. Cell 80(1): 83-93 (1995).
181. Junttila IS. Tuning the Cytokine Responses: An Update on Interleukin (IL)-4 and IL-13 Receptor Complexes. Front Immunol 9: 888 (2018).
182. Kadler KE. Fell Muir Lecture: Collagen fibril formation in vitro and in vivo. Int J Exp Pathol 98(1): 4-16 (2017).
183. Kall L, Krogh A, Sonnhammer EL. Advantages of combined transmembrane topology and signal peptide prediction--the Phobius web server. Nucleic Acids Res 35(Web Server issue): W429-32 (2007).
184. Kamata M, Tada Y. Crosstalk: keratinocytes and immune cells in psoriasis. Front Immunol 14: 1286344 (2023).
185. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1): 27-30 (2000).
186. Kanhere A, Hertweck A, Bhatia U et al. T-bet and GATA3 orchestrate Th1 and Th2 differentiation through lineage-specific targeting of distal regulatory elements. Nat Commun 3: 1268 (2012).
187. Karimnezhad A. More accurate estimation of cell composition in bulk expression through robust integration of single-cell information. Bioinform Adv 2(1): vbac049 (2022).
188. Kassambara A. rstatix: Pipe-friendly framework for basic statistical tests. R package version 0.7. 0. In. 2021.
189. Kassambara A. ggpubr: 'ggplot2' Based Publication Ready Plots. (2022).
190. Kawakami Y, Kajita A, Hasui KI et al. Elevated expression of interleukin-6 (IL-6) and serum amyloid A (SAA) in the skin and the serum of recessive dystrophic epidermolysis bullosa: Skin as a possible source of IL-6 through Toll-like receptor ligands and SAA. Exp Dermatol 33(3): e15040 (2024).
191. Kern JS, Loeckermann S, Fritsch A et al. Mechanisms of fibroblast cell therapy for dystrophic epidermolysis bullosa: high stability of collagen VII favors long-term skin integrity. Mol Ther 17(9): 1605-15 (2009).
192. Kho YC, Rhodes LM, Robertson SJ et al. Epidemiology of epidermolysis bullosa in the antipodes: the Australasian Epidermolysis Bullosa Registry with a focus on Herlitz junctional epidermolysis bullosa. Arch Dermatol 146(6): 635-40 (2010).
193. Kim D, Paggi JM, Park C et al. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol 37(8): 907-15 (2019).
194. Kim K, Kim J, Kim H et al. Effect of alpha-Lipoic Acid on the Development of Human Skin Equivalents Using a Pumpless Skin-on-a-Chip Model. Int J Mol Sci 22(4): (2021).
195. Kim MJ, Im MA, Lee JS et al. Effect of S100A8 and S100A9 on expressions of cytokine and skin barrier protein in human keratinocytes. Mol Med Rep 20(3): 2476-83 (2019).
196. Kim SH, Lee YH. Re-evaluation of the distribution of Meissner's corpuscles in human skin. Anat Cell Biol 53(3): 325-9 (2020).
197. Kiner E, Willie E, Vijaykumar B et al. Gut CD4(+) T cell phenotypes are a continuum molded by microbes, not by T(H) archetypes. Nat Immunol 22(2): 216-28 (2021).
198. Kiritsi D, Dieter K, Niebergall-Roth E et al. Clinical trial of ABCB5+ mesenchymal stem cells for recessive dystrophic epidermolysis bullosa. JCI Insight 6(22): (2021).
199. Kiuru M, Itoh M, Cairo MS et al. Bone marrow stem cell therapy for recessive dystrophic epidermolysis bullosa. Dermatol Clin 28(2): 371-82, xii-xiii (2010).
200. Knupp C, Pinali C, Munro PM et al. Structural correlation between collagen VI microfibrils and collagen VI banded aggregates. J Struct Biol 154(3): 312-26 (2006).
201. Koga H, Teye K, Hamada T et al. A case of intermediate recessive dystrophic epidermolysis bullosa with a novel COL7A1 mutation. J Dermatol 51(7): e231-e2 (2024).
202. Kogut I, Roop DR, Bilousova G. Differentiation of human induced pluripotent stem cells into a keratinocyte lineage. Methods Mol Biol 1195: 1-12 (2014).
203. Kolde R. pheatmap: Pretty Heatmaps. In, 1.0.12 edn. 2019.
204. Kolter J, Feuerstein R, Zeis P et al. A Subset of Skin Macrophages Contributes to the Surveillance and Regeneration of Local Nerves. Immunity 50(6): 1482-97 e7 (2019).
205. Komatsu K, Yamaguchi S, Utsumi D et al. A Case of Dominant Dystrophic Epidermolysis Bullosa with a G2043R Mutation in the Type VII Collagen Gene. Acta Dermatovenerol Croat 28(4): 251-2 (2020).
206. Komori T, Dainichi T, Otsuka A et al. Mild dystrophic epidermolysis bullosa associated with homozygous gene mutation c.6216+5G>T in type VII collagen ultrastructurally suggestive of the decreased number of anchoring fibrils. J Dermatol 45(11): e305-e6 (2018).
207. Koshida S, Tsukamura A, Yanagi T et al. Hallopeau-Siemens dystrophic epidermolysis bullosa due to homozygous 5818delC mutation in the COL7A gene. Pediatr Int 55(2): 234-7 (2013).
208. Koster J, Geerts D, Favre B et al. Analysis of the interactions between BP180, BP230, plectin and the integrin alpha6beta4 important for hemidesmosome assembly. J Cell Sci 116(Pt 2): 387-99 (2003).
209. Koster J, van Wilpe S, Kuikman I et al. Role of binding of plectin to the integrin beta4 subunit in the assembly of hemidesmosomes. Mol Biol Cell 15(3): 1211-23 (2004).
210. Koussounadis A, Langdon SP, Um IH et al. Relationship between differentially expressed mRNA and mRNA-protein correlations in a xenograft model system. Sci Rep 5: 10775 (2015).
211. Kuhl T, Mezger M, Hausser I et al. Collagen VII Half-Life at the Dermal-Epidermal Junction Zone: Implications for Mechanisms and Therapy of Genodermatoses. J Invest Dermatol 136(6): 1116-23 (2016).
212. Kuhl T, Mezger M, Hausser I et al. High Local Concentrations of Intradermal MSCs Restore Skin Integrity and Facilitate Wound Healing in Dystrophic Epidermolysis Bullosa. Mol Ther 23(8): 1368-79 (2015).
213. Kulkarni VS, Alagarsamy V, Solomon VR et al. Drug Repurposing: An Effective Tool in Modern Drug Discovery. Russ J Bioorg Chem 49(2): 157-66 (2023).
214. Kuo TC, Wang PH, Wang YK et al. RSDB: A rare skin disease database to link drugs with potential drug targets for rare skin diseases. Sci Data 9(1): 521 (2022).
215. Kuriyama Y, Shimizu A, Kosaka K et al. Novel mutation in COL7A1 in recessive dystrophic epidermolysis bullosa successfully treated with cultured epidermal autograft transplantation. J Dermatol 48(9): e480-e1 (2021).
216. Kwan AP, Cummings CE, Chapman JA et al. Macromolecular organization of chicken type X collagen in vitro. J Cell Biol 114(3): 597-604 (1991).
217. Laly AC, Sliogeryte K, Pundel OJ et al. The keratin network of intermediate filaments regulates keratinocyte rigidity sensing and nuclear mechanotransduction. Sci Adv 7(5): (2021).
218. Lara S, Akula S, Fu Z et al. The Human Monocyte-A Circulating Sensor of Infection and a Potent and Rapid Inducer of Inflammation. Int J Mol Sci 23(7): (2022).
219. LaRue MM, Parker S, Puccini J et al. Metabolic reprogramming of tumor-associated macrophages by collagen turnover promotes fibrosis in pancreatic cancer. Proc Natl Acad Sci U S A 119(16): e2119168119 (2022).
220. Latvanlehto A, Snellman A, Tu H et al. Type XIII collagen and some other transmembrane collagens contain two separate coiled-coil motifs, which may function as independent oligomerization domains. J Biol Chem 278(39): 37590-9 (2003).
221. Lauria G, Cazzato D, Porretta-Serapiglia C et al. Morphometry of dermal nerve fibers in human skin. Neurology 77(3): 242-9 (2011).
222. Leach SM, Gibbings SL, Tewari AD et al. Human and Mouse Transcriptome Profiling Identifies Cross-Species Homology in Pulmonary and Lymph Node Mononuclear Phagocytes. Cell Rep 33(5): 108337 (2020).
223. Leask A, Byrne C, Fuchs E. Transcription factor AP2 and its role in epidermal-specific gene expression. Proc Natl Acad Sci U S A 88(18): 7948-52 (1991).
224. Lee PY, Li Y, Kumagai Y et al. Type I interferon modulates monocyte recruitment and maturation in chronic inflammation. Am J Pathol 175(5): 2023-33 (2009).
225. Lee SE, Lee SJ, Kim SE et al. Intravenous allogeneic umbilical cord blood-derived mesenchymal stem cell therapy in recessive dystrophic epidermolysis bullosa patients. JCI Insight 6(2): (2021).
226. Levin Y. The role of statistical power analysis in quantitative proteomics. Proteomics 11(12): 2565-7 (2011).
227. Lewis P, Hensel M, Emerman M. Human immunodeficiency virus infection of cells arrested in the cell cycle. EMBO J 11(8): 3053-8 (1992).
228. Li P, Ma C, Li J et al. Proteomic characterization of four subtypes of M2 macrophages derived from human THP-1 cells. J Zhejiang Univ Sci B 23(5): 407-22 (2022).
229. Liao Y, Itoh M, Yang A et al. Human cord blood-derived unrestricted somatic stem cells promote wound healing and have therapeutic potential for patients with recessive dystrophic epidermolysis bullosa. Cell Transplant 23(3): 303-17 (2014).
230. Liao Y, Ivanova L, Zhu H et al. Cord Blood-Derived Stem Cells Suppress Fibrosis and May Prevent Malignant Progression in Recessive Dystrophic Epidermolysis Bullosa. Stem Cells 36(12): 1839-50 (2018).
231. Liao Y, Ivanova L, Zhu H et al. Rescue of the mucocutaneous manifestations by human cord blood derived nonhematopoietic stem cells in a mouse model of recessive dystrophic epidermolysis bullosa. Stem Cells 33(6): 1807-17 (2015).
232. Liao Y, Smyth GK, Shi W. The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Res 41(10): e108 (2013).
233. Lin C, Li Y, Chu Y et al. Single-cell discovery of the scene and potential immunotherapeutic target in hypopharyngeal tumor environment. Cancer Gene Ther: (2022).
234. Lin YC, Aala WJF, Guevara BEK et al. Whole-exome sequencing in the clinical setting: Establishing a foothold for precision medicine in genodermatoses and other diseases. Journal of the Philippine Dermatological Society 30(2): 4-8 (2021).
235. Liu K, Waskow C, Liu X et al. Origin of dendritic cells in peripheral lymphoid organs of mice. Nat Immunol 8(6): 578-83 (2007).
236. Liu L, Fuhlbrigge RC, Karibian K et al. Dynamic programming of CD8+ T cell trafficking after live viral immunization. Immunity 25(3): 511-20 (2006).
237. Liu Y, Wang H, Taylor M et al. Classification of human chronic inflammatory skin disease based on single-cell immune profiling. Sci Immunol 7(70): eabl9165 (2022).
238. Liu Y, Wang H, Taylor M et al. scRNA-seq for chronic inflammatory skin rashes. Science Immunol 7(70): (2022).
239. Lobito AA, Ramani SR, Tom I et al. Murine insulin growth factor-like (IGFL) and human IGFL1 proteins are induced in inflammatory skin conditions and bind to a novel tumor necrosis factor receptor family member, IGFLR1. J Biol Chem 286(21): 18969-81 (2011).
240. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12): 550 (2014).
241. Lykke-Andersen S, Jensen TH. Nonsense-mediated mRNA decay: an intricate machinery that shapes transcriptomes. Nat Rev Mol Cell Biol 16(11): 665-77 (2015).
242. Lynch MD, Watt FM. Fibroblast heterogeneity: implications for human disease. J Clin Invest 128(1): 26-35 (2018).
243. Ma F, Plazyo O, Billi AC et al. Single cell and spatial sequencing define processes by which keratinocytes and fibroblasts amplify inflammatory responses in psoriasis. Nat Commun 14(1): 3455 (2023).
244. Ma M, Jiang W, Zhou R. DAMPs and DAMP-sensing receptors in inflammation and diseases. Immunity 57(4): 752-71 (2024).
245. Mackay LK, Braun A, Macleod BL et al. Cutting edge: CD69 interference with sphingosine-1-phosphate receptor function regulates peripheral T cell retention. J Immunol 194(5): 2059-63 (2015).
246. Madsen DH, Leonard D, Masedunskas A et al. M2-like macrophages are responsible for collagen degradation through a mannose receptor-mediated pathway. J Cell Biol 202(6): 951-66 (2013).
247. Malekpour K, Hazrati A, Soudi S et al. Combinational administration of mesenchymal stem cell-derived exosomes and metformin reduces inflammatory responses in an in vitro model of insulin resistance in HepG2 cells. Heliyon 9(5): e15489 (2023).
248. Maloney NJ, Tegtmeyer K, Zhao J et al. Dupilumab in Dermatology: Potential for Uses Beyond Atopic Dermatitis. J Drugs Dermatol 18(10): (2019).
249. Marcos-Garces V, Molina Aguilar P, Bea Serrano C et al. Age-related dermal collagen changes during development, maturation and ageing - a morphometric and comparative study. J Anat 225(1): 98-108 (2014).
250. Mariath LM, Santin JT, Frantz JA et al. Genotype-phenotype correlations on epidermolysis bullosa with congenital absence of skin: A comprehensive review. Clin Genet 99(1): 29-41 (2021).
251. Mariath LM, Santin JT, Schuler-Faccini L et al. Inherited epidermolysis bullosa: update on the clinical and genetic aspects. An Bras Dermatol 95(5): 551-69 (2020).
252. Marionnet C, Pierrard C, Lejeune F et al. Different oxidative stress response in keratinocytes and fibroblasts of reconstructed skin exposed to non extreme daily-ultraviolet radiation. PLoS One 5(8): e12059 (2010).
253. Marsland BJ, Battig P, Bauer M et al. CCL19 and CCL21 induce a potent proinflammatory differentiation program in licensed dendritic cells. Immunity 22(4): 493-505 (2005).
254. Martelli F, Lin J, Mele S et al. Identifying potential dietary treatments for inherited metabolic disorders using Drosophila nutrigenomics. Cell Rep 43(3): 113861 (2024).
255. Maseda R, Martinez-Santamaria L, Sacedon R et al. Beneficial Effect of Systemic Allogeneic Adipose Derived Mesenchymal Cells on the Clinical, Inflammatory and Immunologic Status of a Patient With Recessive Dystrophic Epidermolysis Bullosa: A Case Report. Front Med (Lausanne) 7: 576558 (2020).
256. McCluskey D, Benzian-Olsson N, Mahil SK et al. Single-cell analysis implicates T(H)17-to-T(H)2 cell plasticity in the pathogenesis of palmoplantar pustulosis. J Allergy Clin Immunol 150(4): 882-93 (2022).
257. McGinnis CS, Murrow LM, Gartner ZJ. DoubletFinder: Doublet Detection in Single-Cell RNA Sequencing Data Using Artificial Nearest Neighbors. Cell Syst 8(4): 329-37 e4 (2019).
258. McGovern N, Schlitzer A, Gunawan M et al. Human dermal CD14(+) cells are a transient population of monocyte-derived macrophages. Immunity 41(3): 465-77 (2014).
259. McGrath JA, Schofield OM, Eady RA. Epidermolysis bullosa pruriginosa: dystrophic epidermolysis bullosa with distinctive clinicopathological features. Br J Dermatol 130(5): 617-25 (1994).
260. McKenna KE, Walsh MY, Bingham EA. Epidermolysis bullosa in Northern Ireland. Br J Dermatol 127(4): 318-21 (1992).
261. McMillan JR, Akiyama M, Shimizu H. Epidermal basement membrane zone components: ultrastructural distribution and molecular interactions. J Dermatol Sci 31(3): 169-77 (2003).
262. Merad M, Hoffmann P, Ranheim E et al. Depletion of host Langerhans cells before transplantation of donor alloreactive T cells prevents skin graft-versus-host disease. Nat Med 10(5): 510-7 (2004).
263. Merad M, Manz MG, Karsunky H et al. Langerhans cells renew in the skin throughout life under steady-state conditions. Nat Immunol 3(12): 1135-41 (2002).
264. Mi H, Muruganujan A, Huang X et al. Protocol Update for large-scale genome and gene function analysis with the PANTHER classification system (v.14.0). Nat Protoc 14(3): 703-21 (2019).
265. Miller SA, Policastro RA, Sriramkumar S et al. LSD1 and Aberrant DNA Methylation Mediate Persistence of Enteroendocrine Progenitors That Support BRAF-Mutant Colorectal Cancer. Cancer Res 81(14): 3791-805 (2021).
266. Mineev VN, Sorokina LN, Nyoma MA et al. [Expression of the alpha subunit of the receptor to interleukin 4 in bronchial asthma]. Bulletin of St. Petersburg State University 11(2): (2010).
267. Minota K, Schmeichel AM, Gehrking JA et al. Refined Quantitation of Sweat Gland Innervation. J Neuropathol Exp Neurol 78(5): 453-9 (2019).
268. Miyamoto D, Santi CG, Aoki V et al. Bullous pemphigoid. An Bras Dermatol 94(2): 133-46 (2019).
269. Mohammedi R, Mellerio JE, Ashton GH et al. A recurrent COL7A1 mutation, R2814X, in British patients with recessive dystrophic epidermolysis bullosa. Clin Exp Dermatol 24(1): 37-9 (1999).
270. Monaco G, Lee B, Xu W et al. RNA-Seq Signatures Normalized by mRNA Abundance Allow Absolute Deconvolution of Human Immune Cell Types. Cell Rep 26(6): 1627-40 e7 (2019).
271. Montagna W, Carlisle K. Structural changes in aging human skin. J Invest Dermatol 73(1): 47-53 (1979).
272. Moravvej H, Abdollahimajd F, Naseh MH et al. Cultured allogeneic fibroblast injection vs. fibroblasts cultured on amniotic membrane scaffold for dystrophic epidermolysis bullosa treatment. Br J Dermatol 179(1): 72-9 (2018).
273. Mu YZ, Du ZC, Zhang ZZ et al. The clinical phenotype and a novel COL7A1 mutation in a Chinese family with dystrophic epidermolysis bullosa pruriginosa. J Eur Acad Dermatol Venereol 32(10): e372-e3 (2018).
274. Nagai M, Nagai H, Tominaga C et al. Localised Dominant Dystrophic Epidermolysis Bullosa with a Novel de Novo Mutation in COL7A1 Diagnosed by Next-generation Sequencing. Acta Derm Venereol 95(5): 629-31 (2015).
275. Nakamura E, Majima Y, Hashizume H et al. Dominant dystrophic epidermolysis bullosa pruriginosa with a COL7A1 exon 87 c.6898C>T mutation. Clin Exp Dermatol 44(1): 82-4 (2019).
276. Nam AR, Kim D, Kim M et al. S100A8 Induces Secretion of MCP-1, IL-6, and IL-8 via TLR4 in Jurkat T Cells. Biomedical Science Letters 22: 60-4 (2016).
277. Napolitano M, Di Guida A, Nocerino M et al. The emerging role of dupilumab in dermatological indications. Expert Opin Biol Ther 21(11): 1461-71 (2021).
278. Nassef S, Essam M, Abdelfattah D et al. Evaluation of Impact of Interferon-Induced Helicase C Domain-Containing Protein 1 Gene in Egyptian Systemic Lupus Erythematosus Patients and its Relationship With Vascular Manifestations of the Disease. Arch Rheumatol 33(2): 181-9 (2018).
279. Natale MI, Manzur GB, Lusso SB et al. Analysis of COL7A1 pathogenic variants in a large cohort of dystrophic epidermolysis bullosa patients from Argentina reveals a new genotype-phenotype correlation. Am J Med Genet A 188(11): 3153-61 (2022).
280. Natsuga K, Sawamura D, Goto M et al. Response of intractable skin ulcers in recessive dystrophic epidermolysis bullosa patients to an allogeneic cultured dermal substitute. Acta Derm Venereol 90(2): 165-9 (2010).
281. Navrazhina K, Garcet S, Frew JW et al. The inflammatory proteome of hidradenitis suppurativa skin is more expansive than that of psoriasis vulgaris. J Am Acad Dermatol 86(2): 322-30 (2022).
282. Neerken S, Lucassen GW, Bisschop MA et al. Characterization of age-related effects in human skin: A comparative study that applies confocal laser scanning microscopy and optical coherence tomography. J Biomed Opt 9(2): 274-81 (2004).
283. Neumayer G, Torkelson JL, Li S et al. A scalable and cGMP-compatible autologous organotypic cell therapy for Dystrophic Epidermolysis Bullosa. Nat Commun 15(1): 5834 (2024).
284. Niebergall-Roth E, Dieter K, Daniele C et al. Kinetics of Wound Development and Healing Suggests a Skin-Stabilizing Effect of Allogeneic ABCB5(+) Mesenchymal Stromal Cell Treatment in Recessive Dystrophic Epidermolysis Bullosa. Cells 12(11): (2023).
285. Nogueira C, Erlmann P, Villeneuve J et al. SLY1 and Syntaxin 18 specify a distinct pathway for procollagen VII export from the endoplasmic reticulum. Elife 3: e02784 (2014).
286. Nystrom A, Kiritsi D. Transmembrane collagens-Unexplored mediators of epidermal-dermal communication and tissue homeostasis. Exp Dermatol 30(1): 10-6 (2021).
287. Ohashi Y, Uchida K, Fukushima K et al. Correlation between CD163 expression and resting pain in patients with hip osteoarthritis: Possible contribution of CD163+ monocytes/macrophages to pain pathogenesis. J Orthop Res 40(6): 1365-74 (2022).
288. Olaniru OE, Kadolsky U, Kannambath S et al. Single-cell transcriptomic and spatial landscapes of the developing human pancreas. Cell Metab 35(1): 184-99 e5 (2023).
289. Olsen BR, Winterhalter KH, Gordon MK et al. FACIT Collagens and Their Biological Roles. Trends in Glycoscience and Glycotechnology 7(34): 115-27 (1995).
290. Omole AE, Fakoya AOJ. Ten years of progress and promise of induced pluripotent stem cells: historical origins, characteristics, mechanisms, limitations, and potential applications. PeerJ 6: e4370 (2018).
291. Onoufriadis A, Proudfoot LE, Ainali C et al. Transcriptomic profiling of recessive dystrophic epidermolysis bullosa wounded skin highlights drug repurposing opportunities to improve wound healing. Exp Dermatol 31(3): 420-6 (2022).
292. Ordovas JM, Corella D. Nutritional genomics. Annu Rev Genomics Hum Genet 5: 71-118 (2004).
293. Ozcan Y, Ozlu E, Karagun E et al. Dermatopathological Correlation of Clinically Challenging Cutaneous Lesions: a Single Center Experience of 2184 Cases. Dermatol Pract Concept 12(4): e2022186 (2022).
294. Papanikolaou M, Nattkemper L, Benzian-Olsson N et al. Th2 response drives itch in dystrophic epidermolysis bullosa pruriginosa: a case-control study. J Am Acad Dermatol: (2024).
295. Parente MG, Chung LC, Ryynanen J et al. Human type VII collagen: cDNA cloning and chromosomal mapping of the gene. Proc Natl Acad Sci U S A 88(16): 6931-5 (1991).
296. Park Y, Hauschild AC. The effect of data transformation on low-dimensional integration of single-cell RNA-seq. BMC Bioinformatics 25(1): 171 (2024).
297. Parthasarathy V, Cravero K, Xu L et al. The blood proteomic signature of prurigo nodularis reveals distinct inflammatory and neuropathic endotypes: A cluster analysis. J Am Acad Dermatol 88(5): 1101-9 (2023).
298. Pasparakis M, Haase I, Nestle FO. Mechanisms regulating skin immunity and inflammation. Nat Rev Immunol 14(5): 289-301 (2014).
299. Pavicic Z, Kmet-Vizintin P, Kansky A et al. Occurrence of hereditary bullous epidermolyses in Croatia. Pediatr Dermatol 7(2): 108-10 (1990).
300. Pepper M, Jenkins MK. Origins of CD4(+) effector and central memory T cells. Nat Immunol 12(6): 467-71 (2011).
301. Perdoni C, Osborn MJ, Tolar J. Gene editing toward the use of autologous therapies in recessive dystrophic epidermolysis bullosa. Transl Res 168: 50-8 (2016).
302. Perumal S, Antipova O, Orgel JP. Collagen fibril architecture, domain organization, and triple-helical conformation govern its proteolysis. Proc Natl Acad Sci U S A 105(8): 2824-9 (2008).
303. Petrof G, Martinez-Queipo M, Mellerio JE et al. Fibroblast cell therapy enhances initial healing in recessive dystrophic epidermolysis bullosa wounds: results of a randomized, vehicle-controlled trial. Br J Dermatol 169(5): 1025-33 (2013).
304. Petrova A, Georgiadis C, Fleck RA et al. Human Mesenchymal Stromal Cells Engineered to Express Collagen VII Can Restore Anchoring Fibrils in Recessive Dystrophic Epidermolysis Bullosa Skin Graft Chimeras. J Invest Dermatol 140(1): 121-31 e6 (2020).
305. Pincelli C, Marconi A. Keratinocyte stem cells: friends and foes. J Cell Physiol 225(2): 310-5 (2010).
306. Platt AM, Randolph GJ. Dendritic cell migration through the lymphatic vasculature to lymph nodes. Adv Immunol 120: 51-68 (2013).
307. Poblet E, Jimenez F, Escario-Travesedo E et al. Eccrine sweat glands associate with the human hair follicle within a defined compartment of dermal white adipose tissue. Br J Dermatol 178(5): 1163-72 (2018).
308. Poon MML, Caron DP, Wang Z et al. Tissue adaptation and clonal segregation of human memory T cells in barrier sites. Nat Immunol 24(2): 309-19 (2023).
309. Pourani MR, Vahidnezhad H, Mansouri P et al. Losartan treatment improves recessive dystrophic epidermolysis bullosa: A case series. Dermatol Ther 35(7): e15515 (2022).
310. Pulkkinen L, Ringpfeil F, Uitto J. Progress in heritable skin diseases: molecular bases and clinical implications. J Am Acad Dermatol 47(1): 91-104 (2002).
311. Purdie KJ, Pourreyron C, Fassihi H et al. No evidence that human papillomavirus is responsible for the aggressive nature of recessive dystrophic epidermolysis bullosa-associated squamous cell carcinoma. J Invest Dermatol 130(12): 2853-5 (2010).
312. R Core Team. R: A language and environment for statistical computing In. Vienna, Austria: R Foundation for Statistical Computing. 2020.
313. Rajesh A, Wise L, Hibma M. The role of Langerhans cells in pathologies of the skin. Immunol Cell Biol 97(8): 700-13 (2019).
314. Rashidghamat E, Kadiyirire T, Ayis S et al. Phase I/II open-label trial of intravenous allogeneic mesenchymal stromal cell therapy in adults with recessive dystrophic epidermolysis bullosa. J Am Acad Dermatol 83(2): 447-54 (2020).
315. Reimer-Taschenbrecker A, Hess M, Davidovic M et al. IL-6 levels dominate the serum cytokine signature of severe epidermolysis bullosa: A prospective cohort study. J Eur Acad Dermatol Venereol: (2024).
316. Remington J, Wang X, Hou Y et al. Injection of recombinant human type VII collagen corrects the disease phenotype in a murine model of dystrophic epidermolysis bullosa. Mol Ther 17(1): 26-33 (2009).
317. Rendra E, Crigna AT, Daniele C et al. Clinical-grade human skin-derived ABCB5+ mesenchymal stromal cells exert anti-apoptotic and anti-inflammatory effects in vitro and modulate mRNA expression in a cisplatin-induced kidney injury murine model. Front Immunol 14: 1228928 (2023).
318. Reynolds G, Vegh P, Fletcher J et al. Developmental cell programs are co-opted in inflammatory skin disease. Science 371(6527): (2021).
319. Ricard-Blum S. The collagen family. Cold Spring Harb Perspect Biol 3(1): a004978 (2011).
320. Rinnerthaler M, Duschl J, Steinbacher P et al. Age-related changes in the composition of the cornified envelope in human skin. Exp Dermatol 22(5): 329-35 (2013).
321. Riol-Blanco L, Sanchez-Sanchez N, Torres A et al. The chemokine receptor CCR7 activates in dendritic cells two signaling modules that independently regulate chemotaxis and migratory speed. J Immunol 174(7): 4070-80 (2005).
322. Rittie L, Fisher GJ. Natural and sun-induced aging of human skin. Cold Spring Harb Perspect Med 5(1): a015370 (2015).
323. Roig-Rosello E, Rousselle P. The Human Epidermal Basement Membrane: A Shaped and Cell Instructive Platform That Aging Slowly Alters. Biomolecules 10(12): (2020).
324. Rojahn TB, Vorstandlechner V, Krausgruber T et al. Single-cell transcriptomics combined with interstitial fluid proteomics defines cell type-specific immune regulation in atopic dermatitis. J Allergy Clin Immunol 146(5): 1056-69 (2020).
325. Roque Quintana B, Pique Duran E, Perez Cejudo JA. Successful Control of Recalcitrant Pruritus in Epidermolysis Bullosa Pruriginosa With Dupilumab. Actas Dermosifiliogr: (2023).
326. Ruez R, Dubrot J, Zoso A et al. Dendritic Cell Migration Toward CCL21 Gradient Requires Functional Cx43. Front Physiol 9: 288 (2018).
327. Ryu Y, Han GH, Jung E et al. Integration of Single-Cell RNA-Seq Datasets: A Review of Computational Methods. Mol Cells 46(2): 106-19 (2023).
328. Ryynanen M, Knowlton RG, Parente MG et al. Human type VII collagen: genetic linkage of the gene (COL7A1) on chromosome 3 to dominant dystrophic epidermolysis bullosa. Am J Hum Genet 49(4): 797-803 (1991).
329. Saito K, Chen M, Bard F et al. TANGO1 facilitates cargo loading at endoplasmic reticulum exit sites. Cell 136(5): 891-902 (2009).
330. Saito K, Yamashiro K, Ichikawa Y et al. cTAGE5 mediates collagen secretion through interaction with TANGO1 at endoplasmic reticulum exit sites. Mol Biol Cell 22(13): 2301-8 (2011).
331. Saito M, Masunaga T, Ishiko A. A novel de novo splice-site mutation in the COL7A1 gene in dominant dystrophic epidermolysis bullosa (DDEB): specific exon skipping could be a prognostic factor for DDEB pruriginosa. Clin Exp Dermatol 34(8): e934-6 (2009).
332. Saito M, Masunaga T, Teraki Y et al. Genotype-phenotype correlations in six Japanese patients with recessive dystrophic epidermolysis bullosa with the recurrent p.Glu2857X mutation. J Dermatol Sci 52(1): 13-20 (2008).
333. Sakai LY, Keene DR, Morris NP et al. Type VII collagen is a major structural component of anchoring fibrils. J Cell Biol 103(4): 1577-86 (1986).
334. Sanchez-Jimeno C, Cuadrado-Corrales N, Aller E et al. Recessive dystrophic epidermolysis bullosa: the origin of the c.6527insC mutation in the Spanish population. Br J Dermatol 168(1): 226-9 (2013).
335. Sanders JE, Goldstein BS, Leotta DF. Skin response to mechanical stress: adaptation rather than breakdown--a review of the literature. J Rehabil Res Dev 32(3): 214-26 (1995).
336. Sato H, Singer RH. Cellular variability of nonsense-mediated mRNA decay. Nat Commun 12(1): 7203 (2021).
337. Sato K, Leidal R, Sato F. Morphology and development of an apoeccrine sweat gland in human axillae. Am J Physiol 252(1 Pt 2): R166-80 (1987).
338. Satoh M, Hirayoshi K, Yokota S et al. Intracellular interaction of collagen-specific stress protein HSP47 with newly synthesized procollagen. J Cell Biol 133(2): 469-83 (1996).
339. Sauermann K, Clemann S, Jaspers S et al. Age related changes of human skin investigated with histometric measurements by confocal laser scanning microscopy in vivo. Skin Res Technol 8(1): 52-6 (2002).
340. Sauk JJ, Smith T, Norris K et al. Hsp47 and the translation-translocation machinery cooperate in the production of alpha 1(I) chains of type I procollagen. J Biol Chem 269(6): 3941-6 (1994).
341. Sawada H, Konomi H, Hirosawa K. Characterization of the collagen in the hexagonal lattice of Descemet's membrane: its relation to type VIII collagen. J Cell Biol 110(1): 219-27 (1990).
342. Saxena N, Mok KW, Rendl M. An updated classification of hair follicle morphogenesis. Exp Dermatol 28(4): 332-44 (2019).
343. Schneider C, Mervis J, Lev-Tov H. Novel frameshift mutation in the noncollagenous region of the COL7A1 gene in pretibial epidermolysis bullosa. Int J Dermatol 62(4): e204-e5 (2023).
344. Sebastiano V, Zhen HH, Haddad B et al. Human COL7A1-corrected induced pluripotent stem cells for the treatment of recessive dystrophic epidermolysis bullosa. Sci Transl Med 6(264): 264ra163 (2014).
345. See P, Dutertre CA, Chen J et al. Mapping the human DC lineage through the integration of high-dimensional techniques. Science 356(6342): (2017).
346. Sekijima Y, Wiseman RL, Matteson J et al. The biological and chemical basis for tissue-selective amyloid disease. Cell 121(1): 73-85 (2005).
347. Shehadeh W, Sarig O, Bar J et al. Treatment of epidermolysis bullosa pruriginosa-associated pruritus with dupilumab. Br J Dermatol 182(6): 1495-7 (2020).
348. Sheridan BS, Lefrancois L. Regional and mucosal memory T cells. Nat Immunol 12(6): 485-91 (2011).
349. Shimizu H, Ishiko A, Masunaga T et al. Most anchoring fibrils in human skin originate and terminate in the lamina densa. Lab Invest 76(6): 753-63 (1997).
350. Shinkuma S, Masunaga T, Miyawaki S et al. A case of recessive dystrophic epidermolysis bullosa with a novel c.6885_6898del14 mutation in the COL7A1 gene. J Dermatol Sci 88(1): 139-41 (2017).
351. Smith T, Ferreira LR, Hebert C et al. Hsp47 and cyclophilin B traverse the endoplasmic reticulum with procollagen into pre-Golgi intermediate vesicles. A role for Hsp47 and cyclophilin B in the export of procollagen from the endoplasmic reticulum. J Biol Chem 270(31): 18323-8 (1995).
352. So JY, Nazaroff J, Iwummadu CV et al. Long-term safety and efficacy of gene-corrected autologous keratinocyte grafts for recessive dystrophic epidermolysis bullosa. Orphanet J Rare Dis 17(1): 377 (2022).
353. Sonnenberg A, Calafat J, Janssen H et al. Integrin alpha 6/beta 4 complex is located in hemidesmosomes, suggesting a major role in epidermal cell-basement membrane adhesion. J Cell Biol 113(4): 907-17 (1991).
354. Sorushanova A, Delgado LM, Wu Z et al. The Collagen Suprafamily: From Biosynthesis to Advanced Biomaterial Development. Adv Mater 31(1): e1801651 (2019).
355. South AP, Uitto J. Type VII Collagen Replacement Therapy in Recessive Dystrophic Epidermolysis Bullosa-How Much, How Often? J Invest Dermatol 136(6): 1079-81 (2016).
356. Sricholpech M, Perdivara I, Yokoyama M et al. Lysyl hydroxylase 3-mediated glucosylation in type I collagen: molecular loci and biological significance. J Biol Chem 287(27): 22998-3009 (2012).
357. Steinbeck BJ, Gao XD, McElroy AN et al. Twin Prime Editing Mediated Exon Skipping/Reinsertion for Restored Collagen VII Expression in Recessive Dystrophic Epidermolysis Bullosa. J Invest Dermatol: (2024).
358. Subramanian A, Tamayo P, Mootha VK et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102(43): 15545-50 (2005).
359. Suihko C, Serup J. Fluorescent fibre-optic confocal imaging of lesional and non-lesional psoriatic skin compared with normal skin in vivo. Skin Res Technol 18(4): 397-404 (2012).
360. Sun BK, Siprashvili Z, Khavari PA. Advances in skin grafting and treatment of cutaneous wounds. Science 346(6212): 941-5 (2014).
361. Sun W, Yuan Y, Qiu L et al. Increased Proportion of Dual-Positive Th2-Th17 Cells Promotes a More Severe Subtype of Asthma. Can Respir J 2021: 9999122 (2021).
362. Sundaramoorthy M, Meiyappan M, Todd P et al. Crystal structure of NC1 domains. Structural basis for type IV collagen assembly in basement membranes. J Biol Chem 277(34): 31142-53 (2002).
363. Suzuki S, Naitoh Y. Amino acid sequence of a novel integrin beta 4 subunit and primary expression of the mRNA in epithelial cells. EMBO J 9(3): 757-63 (1990).
364. Tadini G, Gualandri L, Colombi M et al. The Italian registry of hereditary epidermolysis bullosa. G. Ital. Dermatol. Venereol. 140(4): 359-72 (2005).
365. Tamoutounour S, Guilliams M, Montanana Sanchis F et al. Origins and functional specialization of macrophages and of conventional and monocyte-derived dendritic cells in mouse skin. Immunity 39(5): 925-38 (2013).
366. Tang JY, Marinkovich MP, Lucas E et al. A systematic literature review of the disease burden in patients with recessive dystrophic epidermolysis bullosa. Orphanet J Rare Dis 16(1): 175 (2021).
367. Tarnutzer K, Siva Sankar D, Dengjel J et al. Collagen constitutes about 12% in females and 17% in males of the total protein in mice. Sci Rep 13(1): 4490 (2023).
368. Teufel F, Almagro Armenteros JJ, Johansen AR et al. SignalP 6.0 predicts all five types of signal peptides using protein language models. Nat Biotechnol 40(7): 1023-5 (2022).
369. Theocharis AD, Manou D, Karamanos NK. The extracellular matrix as a multitasking player in disease. FEBS J 286(15): 2830-69 (2019).
370. Thomas AH, Edelman ER, Stultz CM. Collagen fragments modulate innate immunity. Exp Biol Med (Maywood) 232(3): 406-11 (2007).
371. Thomas CE, Ehrhardt A, Kay MA. Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet 4(5): 346-58 (2003).
372. Thomas PD, Ebert D, Muruganujan A et al. PANTHER: Making genome-scale phylogenetics accessible to all. Protein Sci 31(1): 8-22 (2022).
373. Thorseth M-L, Carretta M, Jensen C et al. Uncovering mediators of collagen degradation in the tumor microenvironment. Matrix Biology Plus 13: 100101 (2022).
374. Tokura Y, Phadungsaksawasdi P, Kurihara K et al. Pathophysiology of Skin Resident Memory T Cells. Front Immunol 11: 618897 (2020).
375. Tolar J, Xia L, Riddle MJ et al. Induced pluripotent stem cells from individuals with recessive dystrophic epidermolysis bullosa. J Invest Dermatol 131(4): 848-56 (2011).
376. Topczewska JM, Ledwon JK, Vaca EE et al. Mechanical stretching stimulates growth of the basal layer and rete ridges in the epidermis. J Tissue Eng Regen Med 13(11): 2121-5 (2019).
377. Toulon A, Breton L, Taylor KR et al. A role for human skin-resident T cells in wound healing. J Exp Med 206(4): 743-50 (2009).
378. Trapnell C, Cacchiarelli D, Grimsby J et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol 32(4): 381-6 (2014).
379. Tsai YC, Tsai TF. Overlapping Features of Psoriasis and Atopic Dermatitis: From Genetics to Immunopathogenesis to Phenotypes. Int J Mol Sci 23(10): (2022).
380. Tweedie S, Braschi B, Gray K et al. Genenames.org: the HGNC and VGNC resources in 2021. Nucleic Acids Res 49(D1): D939-D46 (2021).
381. Ueda M, Saito S, Murata T et al. Combined multiphoton imaging and biaxial tissue extension for quantitative analysis of geometric fiber organization in human reticular dermis. Sci Rep 9(1): 10644 (2019).
382. Uitto J, Chung-Honet LC, Christiano AM. Molecular biology and pathology of type VII collagen. Exp Dermatol 1(1): 2-11 (1992).
383. Uitto J, Pulkkinen L. Molecular genetics of heritable blistering disorders. Arch Dermatol 137(11): 1458-61 (2001).
384. Uitto J, Richard G. Progress in epidermolysis bullosa: from eponyms to molecular genetic classification. Clin Dermatol 23(1): 33-40 (2005).
385. Ulgen E, Ozisik O, Sezerman OU. pathfindR: An R Package for Comprehensive Identification of Enriched Pathways in Omics Data Through Active Subnetworks. Front Genet 10: 858 (2019).
386. UniProt C. UniProt: the Universal Protein Knowledgebase in 2023. Nucleic Acids Res 51(D1): D523-D31 (2023).
387. Vaccaro M, Guarneri C, Guarneri F et al. Dominant pretibial dystrophic epidermolysis bullosa in an Italian family. Pediatr Dermatol 37(6): 1207-9 (2020).
388. Vahidnezhad H, Youssefian L, Zeinali S et al. Dystrophic Epidermolysis Bullosa: COL7A1 Mutation Landscape in a Multi-Ethnic Cohort of 152 Extended Families with High Degree of Customary Consanguineous Marriages. J Invest Dermatol 137(3): 660-9 (2017).
389. van Straalen KR, Ma F, Tsou PS et al. Single-cell sequencing reveals Hippo signaling as a driver of fibrosis in hidradenitis suppurativa. J Clin Invest 134(3): (2024).
390. Vander Beken S, de Vries JC, Meier-Schiesser B et al. Newly Defined ATP-Binding Cassette Subfamily B Member 5 Positive Dermal Mesenchymal Stem Cells Promote Healing of Chronic Iron-Overload Wounds via Secretion of Interleukin-1 Receptor Antagonist. Stem Cells 37(8): 1057-74 (2019).
391. Venugopal SS, Yan W, Frew JW et al. A phase II randomized vehicle-controlled trial of intradermal allogeneic fibroblasts for recessive dystrophic epidermolysis bullosa. J Am Acad Dermatol 69(6): 898-908 e7 (2013).
392. Verplancke P, Beele H, Monstrey S et al. Treatment of dystrophic epidermolysis bullosa with autologous meshed split-thickness skin grafts and allogeneic cultured keratinocytes. Dermatology 194(4): 380-2 (1997).
393. Vicidomini R, Nguyen TH, Choudhury SD et al. Assembly and Exploration of a Single Cell Atlas of the Drosophila Larval Ventral Cord. Identification of Rare Cell Types. Curr Protoc 1(2): e37 (2021).
394. Villaret A, Ipinazar C, Satar T et al. Raman characterization of human skin aging. Skin Res Technol 25(3): 270-6 (2019).
395. Walko G, Castanon MJ, Wiche G. Molecular architecture and function of the hemidesmosome. Cell Tissue Res 360(2): 363-78 (2015).
396. Wally V, Reisenberger M, Kitzmuller S et al. Small molecule drug development for rare genodermatoses - evaluation of the current status in epidermolysis bullosa. Orphanet J Rare Dis 15(1): 292 (2020).
397. Wang X, Wang X, Li Y et al. CRISPR-Cas9-based non-viral gene editing therapy for topical treatment of recessive dystrophic epidermolysis bullosa. Mol Ther Methods Clin Dev 31: 101134 (2023).
398. Wang Y, Zhou M, Zhang L et al. Amelioration of dystrophic epidermolysis bullosa pruriginosa symptoms with dupilumab: A case report. Dermatol Ther 34(6): e15130 (2021).
399. Wang YH, Voo KS, Liu B et al. A novel subset of CD4(+) T(H)2 memory/effector cells that produce inflammatory IL-17 cytokine and promote the exacerbation of chronic allergic asthma. J Exp Med 207(11): 2479-91 (2010).
400. Warshauer EM, Brown A, Fuentes I et al. Ancestral patterns of recessive dystrophic epidermolysis bullosa mutations in Hispanic populations suggest sephardic ancestry. Am J Med Genet A 185(11): 3390-400 (2021).
401. Watanabe R, Gehad A, Yang C et al. Human skin is protected by four functionally and phenotypically discrete populations of resident and recirculating memory T cells. Sci Transl Med 7(279): 279ra39 (2015).
402. Wculek SK, Dunphy G, Heras-Murillo I et al. Metabolism of tissue macrophages in homeostasis and pathology. Cell Mol Immunol 19(3): 384-408 (2022).
403. Webber BR, O'Connor KT, McElmurry RT et al. Rapid generation of Col7a1(-/-) mouse model of recessive dystrophic epidermolysis bullosa and partial rescue via immunosuppressive dermal mesenchymal stem cells. Lab Invest 97(10): 1218-24 (2017).
404. Weinel S, Lucky AW, Uitto J et al. Dystrophic epidermolysis bullosa with one dominant and one recessive mutation of the COL7A1 gene in a child with deafness. Pediatr Dermatol 25(2): 210-4 (2008).
405. Wenzel D, Bayerl J, Nystrom A et al. Genetically corrected iPSCs as cell therapy for recessive dystrophic epidermolysis bullosa. Sci Transl Med 6(264): 264ra165 (2014).
406. Wessagowit V, Ashton GH, Mohammedi R et al. Three cases of de novo dominant dystrophic epidermolysis bullosa associated with the mutation G2043R in COL7A1. Clin Exp Dermatol 26(1): 97-9 (2001).
407. Wilke K, Martin A, Terstegen L et al. A short history of sweat gland biology. Int J Cosmet Sci 29(3): 169-79 (2007).
408. Willinger T, Freeman T, Hasegawa H et al. Molecular signatures distinguish human central memory from effector memory CD8 T cell subsets. J Immunol 175(9): 5895-903 (2005).
409. Wilson DG, Phamluong K, Li L et al. Global defects in collagen secretion in a Mia3/TANGO1 knockout mouse. J Cell Biol 193(5): 935-51 (2011).
410. Wlaschek M, Tantcheva-Poor I, Naderi L et al. Solar UV irradiation and dermal photoaging. J Photochem Photobiol B 63(1-3): 41-51 (2001).
411. Wollina U, Konrad H, Fischer T. Recessive epidermolysis bullosa dystrophicans (Hallopeau-Siemens)--improvement of wound healing by autologous epidermal grafts on an esterified hyaluronic acid membrane. J Dermatol 28(4): 217-20 (2001).
412. Woodley DT, Remington J, Huang Y et al. Intravenously injected human fibroblasts home to skin wounds, deliver type VII collagen, and promote wound healing. Mol Ther 15(3): 628-35 (2007).
413. Wu XG, Yan S, Jiang JQ et al. Successful treatment of epidermolysis bullosa pruriginosa by dupilumab. J Dermatol: (2023).
414. Xu T, Pereira RM, Martinez GJ. An Updated Model for the Epigenetic Regulation of Effector and Memory CD8(+) T Cell Differentiation. J Immunol 207(6): 1497-505 (2021).
415. Yajima M, Kitoh A, Nakano H et al. Dominant dystrophic epidermolysis bullosa pruriginosa with the G2287R mutation. Eur J Dermatol 22(5): 685-7 (2012).
416. Yenamandra VK, Vellarikkal SK, Chowdhury MR et al. Genotype-Phenotype Correlations of Dystrophic Epidermolysis Bullosa in India: Experience from a Tertiary Care Centre. Acta Derm Venereol 98(9): 873-9 (2018).
417. Yu L, Wang J, Bian L et al. Dystrophic Epidermolysis Bullosa Pruriginosa: Successfully Treated With Dupilumab. Dermatitis 34(1): 58-9 (2023).
418. Zalewska A, Glowacka E, Wyczolkowska J et al. Interleukin 6 and 8 levels in plasma and fibroblast cultures in psoriasis. Mediators Inflamm 2006(1): 81767 (2006).
419. Zhang L, Yu X, Zheng L et al. Lineage tracking reveals dynamic relationships of T cells in colorectal cancer. Nature 564(7735): 268-72 (2018).
420. Zhang LJ, Sen GL, Ward NL et al. Antimicrobial Peptide LL37 and MAVS Signaling Drive Interferon-beta Production by Epidermal Keratinocytes during Skin Injury. Immunity 45(1): 119-30 (2016).
421. Zhang R, Xu K, Shao Y et al. Tissue Treg Secretomes and Transcription Factors Shared With Stem Cells Contribute to a Treg Niche to Maintain Treg-Ness With 80% Innate Immune Pathways, and Functions of Immunosuppression and Tissue Repair. Front Immunol 11: 632239 (2020).
422. Zhao S, Guo J, Zhao Y et al. Chidamide, a novel histone deacetylase inhibitor, inhibits the viability of MDS and AML cells by suppressing JAK2/STAT3 signaling. Am J Transl Res 8(7): 3169-78 (2016).
423. Zhao Y, Zhu J, Shi B et al. The transcription factor LEF1 promotes tumorigenicity and activates the TGF-beta signaling pathway in esophageal squamous cell carcinoma. J Exp Clin Cancer Res 38(1): 304 (2019).
424. Zheng Y, Li Y, Zhou K et al. Precise genome-editing in human diseases: mechanisms, strategies and applications. Signal Transduct Target Ther 9(1): 47 (2024).
425. Zhou AG, Little AJ, Antaya RJ. Epidermolysis bullosa pruriginosa treated with dupilumab. Pediatr Dermatol 38(2): 526-7 (2021).
426. Zhu A, Ibrahim JG, Love MI. Heavy-tailed prior distributions for sequence count data: removing the noise and preserving large differences. Bioinformatics 35(12): 2084-92 (2019).
427. Zhu J. Transcriptional regulation of Th2 cell differentiation. Immunol Cell Biol 88(3): 244-9 (2010).