| 研究生: |
邱處安 Chiu, Chu-An |
|---|---|
| 論文名稱: |
以液相沉積法沉積二氧化鋯薄膜並應用於氮化鋁鎵/氮化鎵金氧半結構高電子遷移率電晶體 Liquid-Phase-Deposited High Dielectric Zirconium Oxide for AlGaN/GaN Metal-Oxide-Semiconductor High Electron Mobility Transistors |
| 指導教授: |
方炎坤
Fang, Yean-Kuen 王永和 Wang, Yeong-Her |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 59 |
| 中文關鍵詞: | 氮化鎵 、二氧化鋯 、液相沉積法 |
| 外文關鍵詞: | GaN, ZrO2, Liquid Phase Deposition (LPD) |
| 相關次數: | 點閱:105 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於元件逐漸縮小限寬,電容值無法往增加面積及厚度縮減下提升,而為了解決這個問題,目前主要的趨勢採用高介電值材料做為閘極氧化層,可以有效的提升閘極的絕緣度,並有效降低元件的閘極漏電流,而二氧化鋯除了有高介電值之外,與其他的高介電值材料相比也有較高的能隙,而較高的能隙也可以抑制閘極漏電流的產生,因此我們研究以液向沉積法來成長二氧化鋯薄膜並應用於氮化鎵材料上,製作氮化鋁鎵/氮化鎵金氧半高電子遷移率電晶體。
液相沉積法是一種相當簡單的方法,並且有相當低的成本,以及可以在室溫下進行,避免高溫所產生的缺陷。並且經由X光譜儀可以確定二氧化鋯已沉積在氮化鎵材料上,並且利用原子力顯微鏡來觀察薄膜的表面狀態,以及掃描電子顯微鏡去確定薄膜的厚度。
在元件應用上,我們成功利用液相沉積法沉積二氧化鋯薄膜在氮化鋁鎵/氮化鎵高電子遷移率電晶體上,形成金氧半高電子遷移率電晶體,與傳統高電子遷移率電晶體比較,將可以提升最高的汲極電流密度,從496 mA/mm 提升到627 mA/mm,最大轉導由118 mS/mm降到92 mS/mm,在漏電流方面可以改善了超過10000倍,在順向崩潰電壓以及關閉狀態下的崩潰電壓,也將有顯著的改善。
Because of reducing dimensions of devices, the capacitance can’t increase by increasing the area and reducing the oxide thickness. Nowadays the dominating method is that using the high-k dielectric material to be gate oxidized layer which can improve gate insulation quality and reduce gate leakage current significantly. ZrO2 not only is high-k material but also has greater bandgap compared with other high-k materials which can also suppress gate leakage. In this thesis, ZrO2 film is prepared through liquid phase deposition and used as gate dielectric in AlGaN/GaN MOS-HEMT.
The liquid phase deposition method has advantages of easy operation, low cost, and deposition under room-temperature avoiding the defects producing by high temperature. By using XPS to demonstrate that ZrO2 film could be deposited on GaN. AFM is also used to observe the surface of the ZrO2 film and using SEM to confirm the film thickness.
The AlGaN/GaN MOS-HEMT with a liquid phase deposited ZrO2 as gate insulator is fabricated. Compared with the conventional HEMT, the maximum drain current density increases from 496 to 627mA/mm, whereas the peak extrinsic transconductance decreased slightly from 118 mS/mm to 92 mS/mm in the MOS-HEMT structure. The gate leakage current density of MOSHEMT improved significantly over 10000 times than conventional HEMT. The forward breakdown voltage and off-state breakdown improved with the oxide layer becoming thicker.
[1] H. Morkoc, S. STrite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, “Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies,” J. Appl. Phys., vol. 76, pp. 1363-1398, 1994.
[2] S. T. Sheppard, K. Doverspike, W. L. Pribble, S. T. Allen, and J. W. Palmour, “High-power microwave GaN/AlGaN HEMTs on semi-insulating silicon carbide substrates,” IEEE Electron Device Lett., vol. 20, pp. 161-163, 1999.
[3] I. Nomura, K. Kishino, and A. Kikuchi, “Theoretical estimation of threshold current of cubic GaInN/GaN/AlGaN quantum well lasers,” Solid-State Electronics., vol. 41, pp. 283-286, 1997.
[4] S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett., vol. 64, pp. 1687-1689, 1994.
[5] T. P. Chow and R. Tyagi, “Wide bandgap compound semiconductors for superior high-voltage unipolar power devices,” IEEE Trans. Elect. Dev., vol. 41, pp. 1481-1483, 1994.
[6] M. A. Kahn, J. N. Kuznia, A. R. Bhattrai, and D. T. Olson, “Metal contacts to gallium nitride,” Appl. Phys. Lett., vol. 62, pp. 2859-2861, 1993.
[7] Y. Uzawa, Z. Wang, A. Osinsky, and B. Komiyama, “Submillimeter wave responses in NbN/AlN/NbN tunnel junctions,” Appl. Phys. Lett., vol. 66, pp. 1992-1994, 1995.
[8] S. J. Pearton, GaN and Related Materials, Gordon and Breach Science Publishers, 1997.
[9] Z. Z. Bandic, P. M. Bridger, E. C. Piquette, T. C. McGill, R. P. Vaudo, V. M. Phanse, and J. M. Redwing, “High voltage (450 V) GaN schottky rectifiers,” Appl. Phys. Lett., vol. 74, pp. 1266-1268, 1999.
[10] M. A. Littlejohn, J. R. Hauser, and T. H. Glisson, “Monte Carlo calculation of the velocity-field relationship for gallium nitride,” Appl. Phys. Lett., vol. 26, pp. 625-627, 1975.
[11] U. V. Bhapkar and M. S. Shur, “Monte Carlo calculation of velocity-field characteristics of wurtzite GaN,” J. Appl. Phys., vol. 82, pp. 1649-1655, 1997.
[12] R. Gaska , J. W. Yang, A. Osinsky, Q. chen, M. A. Khan, A. O. Orlov, G. L. Snider, and M. S. Shur, “Electron transport in AlGaN–GaN heterostructures grown on 6H–SiC substrates,” Appl. Phys. Lett., vol. 72, pp. 707-709, 1998.
[13] F. Ren, M. Hong, S. N. G. Chu, M. A. Marcus, M. J. Schurman, A. Baca, S. J. Pearton, and C. R. Abernathy, “Effect of temperature on Ga2O3(Gd2O3)/GaN metal–oxide–semiconductor field-effect transistors,” Appl. Phys. Lett., vol. 73, pp. 3893-3895, 1998.
[14] M. Hong, K. A. Anselm, J. Kwo, H. M. Ng, J. N. Baillargeon, A. R. Kortan., J. P. Mannaerts, A. Y. Cho, C. M. Lee, J. I. Chyi, and T. S. Lay, “Properties of Ga2O3(Gd2O3)/GaN metal–insulator–semiconductor diodes,” J. Vac. Sci. Technol. B, vol. 18, pp. 1453-1456, 2000.
[15] M. A. Khan, X. Hu, G. Sumin, A. Lunev, J. Yang, R. Gaska, and M. S. Shur, “AlGaN/GaN metal oxide semiconductor heterostructure field effect transistor,” IEEE Electron Device Lett., vol. 21, pp. 63-65, 2000.
[16] J. C. Lee, “Ultra-thin gate dielectric and High-k dielectric,”IEEE EDS vanguard series of independent short courses, pp. 129-133, 2005.
[17] D. Vanderbilt, X. Zhao, and D. Ceresoli, “Structural and dielectric properties of crystalline and amorphous ZrO2,” Thin Solid Films, vol. 486, no. 1–2, pp. 125-128, 2005.
[18] M. P. Houng, Y. H. Wang, C. J. Huang, S. P. Huang, and J. H. Horng, “Quality optimization of liquid phase deposition SiO2 films on gallium arsenide,” Solid-State Electronics, vol. 44, pp. 1917-1923, 2000.
[19] Lin J M, Hsu M C, and Fung K Z. J., “Deposition of ZrO2 film by liquid phase deposition,” J Power Sources, vol. 159, pp. 49-54, 2006.
[20] J.S. Kim, H.A. Marzouk, and P.J. Reucroft, “Deposition and structural characterization of ZrO2 and yttria-stabilized ZrO2 films by chemical vapor deposition,” Thin Solid Films, vol. 254, pp. 33-38, 1995.
[21] D. Fisher and A. Kersch, “The effect of dopants on the dielectric constant of HfO2 and ZrO2 from first principles,” Appl. Phys. Lett., vol. 92, no. 1, pp. 012908-1–012908-3, 2008.
[22] J. A. Duffy, Bonding Energy Levels and Bands in Inorganic Solids, John Wiley:
New York, 1990.
[23] D. G. Howitt and A. B. Harker, “The oriented growth of anatase in thin films of amorphous titania,” J. Mater. Res., vol. 2, pp. 201-210, 1987.
[24] Charles M. Perkins, Baylor B. Triplett, Paul C. McIntyre, Krishna C. Saraswat, Suvi Haukka ,and Marko Tuominen, “Electrical and materials properties of ZrO2 gate dielectrics grown by atomic layer chemical vapor deposition,” Appl. Phys. Lett .vol. 78, pp. 2357, 2001.
[25] W. T. Pawlewicz and D. D. Hays, “Microstructure control for sputter-deposited ZrO2, ZrO2 •CaO and ZrO2•Y2O3,” Thin Solid Films, vol. 94, pp. 31, 1982.
[26] H. Nagayama, H. Honda, and H. Kawahara, “A new process for silica coating,” J. Electrochem. Soc., vol. 135, pp. 2013-2016, 1988.
[27] T.Y. Wu, S.K. Lin, P.W. Sze, J.J. Huang, W.C. Chien, C.C. Hu, M.J. Tsai, Y.H. Wang, “AlGaN/GaN MOSHEMTs with liquid-phase-deposited TiO2 as gate dielectric,” IEEE Trans. Elect. Dev., vol. 56, pp. 2911–2916, 2009.
[28] C.C. Hu, M.S. Lin, T.Y. Wu, F. Adriyanto, P.W. Sze, C.L. Wu, Y.H. Wang, ” AlGaN/GaN metal–oxide–semiconductor high-electron mobility transistor with liquid-phase-deposited Barium-doped TiO2 as a gate dielectric”, IEEE Trans. Elect. Dev, vol. 59, pp. 121–127, 2012.
[29] S. Basu, P.K. Singh, P.W. Sze, Y.H. Wang, “AlGaN/GaN metal-oxide-semiconductor high electron mobility transistor with liquid phase deposited Al2O3 as gate dielectric,” J Electrochem Soc., vol. 157, pp. H947–H951, 2010.
[30] T.Y. Wu, C.C. Hu, P.W. Sze, T.J. Huang, F. Adriyanto, C.L. Wu, Y.H. Wang, “AlGaN/GaN metal oxide semiconductor high electron mobility transistor using liquid-phase deposited strontium titanate,” Solid-State Electron, vol. 82, pp. 1-5, 2013.
[31] C Morant, JM Sanz, L Galan, L Soriano, and F Rueda, “An XPS study of the interaction of oxygen with zirconium,” Surface Science, vol.218, pp. 331-345, 1989.
[32] C. Liu, E. F. Chor, and L. S. Tan, “Investigations of HfO2/AlGaN/GaN metal-oxide-semiconductor high electron mobility transistors,” Appl. Phys. Lett., vol. 88, pp. 173504-1-173504-3, 2006.
[33] P. Kozodoy, J. P. Ibbetson, H. Marchand, P. T. Fini, S. Keller, J. S. Speck, S. P. DenBaars, and U. K. Mishra, “Electrical characterization of GaN p-n junctions with and without threading dislocations,” Appl. Phys. Lett., vol. 73, pp. 975-977, 1998.
[34] H. Kim, J. Lee, D. Liu, and W. Lu, “Gate current leakage and breakdown mechanism in unpassivated AlGaN/GaN high electron mobility transistors by post-gate annealing,” Appl. Phys. Lett., vol. 86, pp. 143505-1-143505-3, 2005.
[35] B. Gunduz, and F. Yakuphanoglu, “Effects of UV and white light illuminations on photosensing properties of the 6,13-bis(triisopropylsilylethynyl)pentacene thin film transistor,“Sensor. Actuat. A-phys., vol. 178, pp. 141-153, 2012.
[36] D. A. Neamen, Semiconductor Physics And Devices, Chapter 12, McGraw-Hill, 2003.
[37] J. W. Chung, J. C. Roberts, E. L. Piner, and T. Palacios, “Effect of gate leakage in the subthreshold characteristics of AlGaN/GaN HEMTs,” IEEE Electron Device Lett., vol. 29, p. 11, 2008.