簡易檢索 / 詳目顯示

研究生: 王建翔
Wang, Chien Hsiang
論文名稱: 雙光束干涉引致膽固醇液晶模板形成有序之二維微結構
Two-beam interference induced ordered two-dimensional micro-structure of cholesteric liquid crystal template
指導教授: 李佳榮
Lee, Chia-Rong
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2019
畢業學年度: 108
語文別: 中文
論文頁數: 77
中文關鍵詞: 膽固醇液晶聚合物模板全像光柵繞射圖案Helfrich形變
外文關鍵詞: cholesteric liquid crystal polymer template, holographic grating, diffraction pattern, Helfrich deformation
相關次數: 點閱:72下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文乃研究利用紫外光雷射雙光束干涉場引致產生具備有序二維網格微結構之膽固醇液晶聚合物模板全像光柵。實驗結果首先發現以單光束激發膽固醇液晶與單體混合物之聚合過程,會因高分子單體朝曝光面移動與聚合造成膽固醇液晶螺距收縮而產生縱向內應力,進一步引發Helfrich形變效應而導致無序二維網格微結構,此結構有沿著缺陷線排列之特性。實驗結果進一步發現,改以雙光束干涉場曝光可使得所產生之二維網格微結構變成有序排列,此乃因為一維光強度週期調制之干涉場在樣品近照光邊之光強處先行聚合出一排排有序缺陷線陣列,進一步引導因Helfrich形變效應所導致的二維網格微結構變得排列有序。此論文同時探討干涉光曝光條件(例如光強度、雙光束夾角等)與膽固醇液晶螺距大小等對所形成有序二維網格光柵之有序程度及繞射特性之影響。此外,此模板經過洗淨/回灌過程後仍展現高度可電壓調控繞射特性證明其穩定性與可外部調控性。此研究成功利用缺陷線來操控因Helfrich形變效應所導致的微結構具備有序性,進一步實現此著名現象於光電應用之潛力。

    This thesis studied an ordered two-dimensional (2D) grid microstructure based on a cholesteric liquid crystal (CLC) polymer holographic grating template induced by a two-beam interference field. Experimental results first found that the preferential polymerization of the CLC-monomer mixture near the exposed side the sample will induce a longitudinal internal stress due to the shrinkage of the pitch of the CLC, further causing the Helfrich deformation effect to cause the disorder 2D grid microstructure. This structure has the characteristics of being arranged along the defect line. Experimental results further found that changing to two-beam interference field exposure can make the 2D grid microstructure generated in an orderly arrangement due to the guiding of the polymer defect-line array formed initially along the top-intensity linear regions of the interference field. This study also probed into the influences of interference light exposure conditions (such as light intensity, double-beam included angle, etc.) and the pitch of the CLC on the degree of order and diffraction characteristics of the ordered 2D grid grating. In addition, this template exhibits high voltage-regulated diffraction characteristics after the washing-out/refilling process to prove its stability and external controllability. This study successfully exploited defect lines to manipulate the microstructures caused by the Helfrich deformation effect to have orderliness, further realizing the potential of this famous phenomenon in optoelectronic applications.

    摘要 III 致謝 XI 目錄 XII 圖目錄 XV 表目錄 XVIII 第一章 緒論 1 第二章 液晶介紹 3 2.1 液晶簡介 3 2.2 液晶分類 4 2.2.1 棒狀分子 4 2.3 液晶的物理特性 9 2.3.1 光學異向性與雙折射性 9 2.3.2 介電異向性 13 2.3.3 溫度對液晶的影響 15 2.3.4 連續彈性體理論 16 第三章 膽固醇液晶 18 3.1 膽固醇液晶的光學特性 18 3.1.1 光波在均勻非均向性介質的傳播 18 3.1.2 光波在膽固醇液晶的傳播 19 3.1.3 布拉格反射 20 3.2 影響膽固醇液晶螺距之因素 21 3.2.1 溫度 21 3.2.2 摻雜濃度 22 3.2.3 磁場 22 3.2.4 電場 23 3.3 膽固醇液晶聚合物模板 24 3.3.1 膽固醇液晶聚合物模板的背景 24 3.3.2 製作膽固醇液晶模板 25 第四章 全像術與光柵原理 27 4.1 全像術原理 27 4.1.1 波前的紀錄與重建 27 4.1.2 雙光束干涉 29 4.1.3 繞射光柵週期 32 4.2光柵 34 4.2.1 相位及振幅穿透光柵 34 4.2.2 薄平面和厚體積穿透光柵 35 4.2.3反射式和穿透式體積光柵 36 4.3 薄平面穿透光柵繞射理論 36 4.3.1薄穿透式光柵之純量繞射理論 36 4.4 雷射引致液晶聚合物複合材料光柵 38 第五章 樣品準備與實驗架設 39 5.1 實驗材料 39 5.2 製作液晶平面樣品 42 5.2.1 玻璃基板清潔與配向 : 42 5.2.2 製備玻璃空樣品 43 5.2.3 調配膽固醇液晶模板材料混合物 44 5.2.4 膽固醇液晶模板樣品製備 45 5.3 實驗光路架設 45 5.3.1 雙光束干涉場與繞射量測之光路架設 45 第六章 結果與討論 47 6.1單光束曝光引致膽固醇液晶聚合物模板 48 6.1.1 Helfrich形變引致二維無序網格微結構 48 6.1.2 調控無序二維網格微結構間距 50 6.2雙光束曝光CLC模板 54 6.2.1 有序二維網格光柵 55 6.2.2改變干涉光曝光條件 58 6.2.3不同螺距之有序二維光柵繞射圖案 62 6.3有序二維模板光柵量測應用 66 6.3.1繞射強度變化 66 6.3.2 CLC模板洗掉與回灌有序二維光柵結構穩定性 67 6.3.3施加電場觀察有序二維光柵繞射應用 69 第七章 結論與未來展望 72 7.1 結論 72 7.2 未來展望 73 參考文獻 74

    [1] P. G. de Gennes and J. Prost, “The physics of liquid crystals,” Clarendon Press, Oxford (1993).
    [2] P. M. Knoll, “Displays: Einführung in die technik aktiver und passiver anzeigen,” Hüthig Verlag Heidelberg, Petra Gros (1986).
    [3] 顧鴻壽. 光電液晶平面顯示器:技術基礎及應用第二版. 新文京開發出版 (2004)。
    [4] I. Gvozdovskyy, O. Yaroshchuk, M. Serbina and R. Yamaguchi, “Photoinduced helical inversion in cholesteric liquid crystal cells with homeotropic anchoring,” Opt. Express 20, 3499-3508 (2012).
    [5] J. D. Lin, C. L. Chu, H. Y. Lin, B. You, C. T. Horng, S. Y. Huang, T. S. MO, C. Y. Huang and C. R. Lee, “Wide-band tunable photonic bandgaps based on nematic-refilling cholesteric liquid crystal polymer template samples,” Opt. Mater. Express 5, 1419–1430 (2015).
    [6] W. Helfrich, “Deformation of cholesteric liquid crystals with low threshold voltage,” Appl. Phys. Lett. 17, 12 (1970).
    [7] W. Helfrich, “Conduction-Induced Alignment of Nematic Liquid Crystals: Basic Model and Stability Considerations,” J. Chem. Phys. 51, 4092-4105 (1969).
    [8] R. Williams, “Domains in Liquid Crystals,” J. Chem. Phys. 39, 384-388 (1963).
    [9] C. J. Gerritsma and P. V. Zanten, “Periodic perturbations in the cholesteric plane texture,” Phys. Lett. 37, 47-48 (1970).
    [10] A. Ryabchun and A. Bobrovsky, “Cholesteric Liquid Crystals Materials for Tunable Diffractive Optics,” Adv. Opt. Mater. 6, 15 (2018).
    [11] C. W. Chen, A. N. Brigeman, T. J. Ho and I. C. Khoo, “Normally transparent smart window based on electrically induced instability in dielectrically negative cholesteric liquid crystal,” Opt. Mater. Express 8, 691-697 (2018).
    [12] U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan and T. J.
    Bunning, “Periodic structures generated by light in chiral liquid crystals,” Opt. Express 15, 9273-9280 (2007).
    [13] H. C. Yeh, G. H. Chen and C. R. Lee, “Photoinduced two-dimensional gratings based on dye-doped cholesteric liquid crystal films,” J. Chem. Phys. 127, 141105 (2007).
    [14] H. K. Chin, H. Y. Kuo, Y. C. Zheng, J. D. Lin and C. R. Lee, “Circular polarization and wavelength selective gratings based on holographic cholesteric liquid crystal templates,” Adv. in Cond. Matter Phys. Article ID 5384329 (2018).
    [15] F. Reinitzer, Beiträge zur Kenntniss des Cholesterins, Monatsh. für Chemie 9, 421-441 (1988).
    [16] O. Lehmann, Über fliessende Krystalle, Z. Phys. Chem. 4, 462472 (1889).
    [17] P. Oswald and P. Pieranski, “Nematic and cholesteric liquid crystals: Concepts and Physical properties illustrated by experiments,” CRC Press (1997).
    [18] P. J. Collings and M. Hird, “Introduction to liquid crystals: Chemistry and Physics,” CRC Press (1997).
    [19] G. Vertogen and W. H. de Jeu, “Thermotropic liquid crystals: Fundamentals,” Springer-Verlag Berlin Heidelberg 45 (1988).
    [20] S. Chandrasekhar, “Structural classification of thermotropic liquid crystals,” Springer, Boston, MA 181-187 (1984).
    [21] E. B. Priestley, “Introduction to liquid crystals,” Springer, Boston, MA (1975).
    [22] B. Bahadur, “Liquid Crystals: Application and Uses vol.1,” World Scientific, Singapore (1990).
    [23] M. J. Stephen and J. P. Straley, “Physics of liquid crystals,” Modern Phys. 46, 4 (1974).
    [24] A. K. George, “Optical Anisotropy of Nematic Liquid Crystals,” Phys. and Chem. of Liquids 37, 6571 (1998).
    [25] A. Yariv, “Optical Electronics in Modern Communications,” Oxford University Press (1997).
    [26] J. Li, C. H. Wen, S. Gauza and R. B. Lu, “Refractive indices of Liquid Crystals for Display Applications,” J. Disp. Technol. 1, 51-61 (2005).
    [27] B. E. A. Saleh and M. C. Teich, “Fundamentals of Photonics: Ch6 Polarization and Crystal Optics,” Wiley Press (1991).
    [28] H. Zocher, “The effect of a magnetic field on the nematic state,” Trans. Faraday Soc.29, 945-957 (1933).
    [29] C. W. Oseen, “The Theory of Liquid Crystals,” Trans. Faraday Soc. 29, 883-900 (1933).
    [30] F. C. Frank, “On the theory of liquid crystals,” Faraday Soc. Disc. 25, 19 (1958).
    [31] P. Sheng, “Introduction to the elastic continuum theory of liquid crystals,” Springer, Boston, MA (1975).
    [32] P. G. de Gennes, “Calcul de la distorsion d'une structure cholesterique par un champ magnetique,” Solid State Commun. 6, 163-165 (1968).
    [33] R. B. Meyer, “Effects of electric and magnetic fields on the structure of cholesteric liquid crystals,” Appl. Phys. Lett. 12, 281-282 (1968).
    [34] D. Gabor, “A new microscopic principle,” Nature 161, 777-778 (1948).
    [35] E. N. Leith and J. Upatnieks, “Wavefront reconstruction with continuoustone objects,” JOSAA. 53, 1377-1381 (1963).
    [36] 陳逸寧, 基礎雷射全像術, 全華圖書 (2005)。
    [37] E. Hecht, “Optics: Ch9 Interference,” Addison Wesley, Berlin, 385432 (2017).
    [38] H. J. Eichler, P. Gunter and D. W. Pohl, “Laser- induced dynamic gratings,” Springer-Verlag Berlin Heidelberg (1985).
    [39] A. B. Gojani, “Development of laser-induced grating spectroscopy for underwater temperature measurement in shock wave focusing regions,” Proc. SPIE 5251, 313-322 (2004).
    [40] T. V. Galstyan, B. Saad and M. M. Denariez-Roberge, “Excitation transfer from azo dye to nematic host during photoisomerization,” J. Chem. Phys. 107, 9319-9325 (1997).
    [41] W. R. Klein and B. Q. Cook, “Unified approach to ultrasonic light diffraction,” IEEE Trans. Sonics Ultrason. 14, 123-134 (1967).
    [42] P. Hariharan, “Basics of holography: Thin and thick holograms,” Cambridge University Press (1992).
    [43] T. J. Bunning, L. V. Natarajan, V. Tondiglia, R. L. Surtherland, D. L. Vezie and W. W. Adams, “The morphology and performance of holographic transmission gratings recorded in polymer dispersed liquid crystals,” Polymer 36, 2699-2708 (1995).
    [44] N. Scaramuzza, R. Barberi, F. Simoni, F. Xu, G. Barbero and R. Bartolino, “Buckling of a sheared cholesteric liquid crystal,” Phys. Review A 32, 1134-1143 (1985).

    下載圖示 校內:2024-12-30公開
    校外:2024-12-30公開
    QR CODE