| 研究生: |
潘川禎 Pan, Chuan-Chen |
|---|---|
| 論文名稱: |
筐網圓柱數值模擬分析之研究-以高屏溪里嶺大橋段河道為例 Numerical Simulation of Permeable Pile Groins- A Case Study of Li-Lin-Bridge Reach of Kao-Ping River |
| 指導教授: |
呂珍謀
Leu, Jan-Mou |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系碩士在職專班 Department of Hydraulic & Ocean Engineering (on the job class) |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 58 |
| 中文關鍵詞: | 筐網 、沖刷 、淤積 、導流 |
| 外文關鍵詞: | Porous Cylinder, Scour, Deposit, Conduction current |
| 相關次數: | 點閱:117 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主要藉由二維數值模式水理模擬,探討筐網群樁之沖刷、淤積現象,研究過程以類似案例之渠道試驗資料為模式測試基礎,包含矩形渠道單側佈置多孔介質及複合渠道洪水平原佈置多孔介質兩個案例,藉由案例測試檢定模式參數設定之合理性與模式之預測能力。並以現況河道模擬為目標,針對模式進行檢定與驗證,模式驗證係利用洪水事件實測流速分佈與數值模擬結果相比較,並針對數值模式之可靠性作一系列的討論,包括:(1)不同流量作用下之河道模擬:進行筐網在不同定量流流量狀態下水理特性探討。(2)丁埧工法河道模擬:進行筐網與河川工程常用之工法,如:丁埧,在水理特性上差異之分析。
研究結果顯示,在筐網不同流量作用下,當水位升高至完全浸沒流況時,流況改變之幅度隨水位流量增高而繼續減低,模擬結果顯示完全浸末時,筐網對流速影響之幅度約為33%左右。丁埧工法之比較顯示,筐網並無丁埧之結構物附近流速梯度集中現象,可減低結構物附近之局部沖刷集中之現象。
關鍵字:筐網、沖刷、淤積、導流
The subject is to discuss the scour and deposit phenomenon of porous cylinder via two-dimensional numerical model simulation according to the experiment datum of the similar cases during the research, including the two cases, one is the porous medium for the oblong single channel arrangement and the other is the porous medium of multi-channel flood plain arrangement. Meanwhile, we check the reasonability and predictive ability of parameters setup of test examination model and via the above tow cases. Besides, we do the verification and examination of the testing model focused on the existing watercourse as target. The model verification is to use and compare the distribution and value simulation of the actual flow speed of the flood cases and discuss the reliability of the value simulation model, including(1). the watercourse simulation under the different flow effect to proceed the study of characteristics of the different quantitative water flow of the porous cylinder,(2)the watercourse simulation of groin engineering method proceeds the analysis of water theory characteristics between the porous cylinder and the usual method of the river engineering such as groin.
Based on the research result for verification and analysis, we find out that the porous cylinder will change the breadth of situation of the flow and the breadth will be reduced continuously with the crease of the flow of the water level when the water level is raised up to immerge the situation of flow completely by the different water flow effect of porous cylinder. Meanwhile, the simulation result shows that the porous cylinder will impact the flow speed and the ratio of impacted breadth is about 33% when it is immerged completely. But, after compared the different engineering methods, it shows that there is no flow of groin structure focused on porous cylinder to decrease the partial scour phenomenon focused on the structure.
Keywords: Porous Cylinder, Scour, Deposit, Conduction current
1. Armanini, A., M. ighetti, and P. Grisenti, (2005) “Direct measurement of vegetation resistance in prototype scale” Journal of Hydraulic Research, 43(5), 481–487.
2. Bhattacharyya, S., A. Khalili, and S. Dhinakaran, (2006) “Fluid motion around and through a porous cylinder, ”Chemical Engineering Science 61, pp.4451-4461.
3. Carollo, F. G., D. Termini, and V. Ferro , (2005) “Flow resistance law in channels with flexible submerged vegetation.” J. Hydraul. Eng., 131(7), 554–564.
4. Darby, S. E. (1999) “Effect of riparian vegetation on flow resistance and flood potential.” J. Hydraul. Eng., 125(5), 443–454.
5. Fransson, J.H.M., P. Konieczny, and P.H. Alfredsson, (2004) “Flow around a porous cylinder subject to continuous suction or blowing,”Journal of Fluids and Structures 19 ,pp. 1031-1048.
6. Fischer-Antze, T., N. R. B. Olsen, P. Bates, and T. Stoesser , (2001) “3D numerical modelling of open-channel flow with submerged vegetation.” J. Hydraul. Res., 39(3), 303–310.
7. Ghisalberti, M. and H. M. Nepf, (2002) “Mixing layers and coherent structures in vegetated aquatic flows.” Journal of Geophysical Research, 107(C2), 3-1–3-9.
8. James, C. S. and A. L. Birkhead, (2004), “Flow resistance of emergent vegetation”, J. Hydraul. Res., 42(4), 390–398.
9. Järvelä J. (2002) “Flow resistance of flexible and stiff vegetation a flume study with natural plants” Journal of Hydrology, 269, 44–54.
10. Launder, B. E., and D. B. Spalding, (1974) “The numerical calculation of turbulence flows,” Computer Methods in Applied Mechanics and Engineering, 3(2), 269–289.
11. Lienhard, J. h. (1966), “Synopsis of Lift, Drag and Vortex Frequency Data for Rigid Circular Cylinders,” Washington State University,College of Engineering, Research Division Bulletin, pp.300.
12. Melville, B.W., and S.E. Coleman, (2000), “Bridge Scour,” Water Resourcrs Publications, LLC.
13. Neary, V. S. (2003) “Numerical solution of fully developed flow with vegetative resistance.” J. Eng. Mech., 129(5), 558–563.
14. Nepf, H. M. (1999) “Drag, turbulence and diffusion in flow through emergent vegetation.” Water Resou. Res., 35(2), 479–489.
15. Pasche, E., and G. Rouve (1985) “Overbank flow with vegetatively roughened flood plains.” J. Hydraul. Eng., 111, 1262–1278.
16. Patankar, S. V., (1980) “Numerical heat transfer and fluid flow,” Hemisphere Publishing Corp., New York.
17. Rastogi, A. K., and W. Rodi, (1978) “Predication of heat and mass transfer in open channel”, J. Hydraul. Div. Proc. ASCE, 140(HY3), 397–420.
18. Rodi, W. (1993).“Turbulence models and their application in hydraulics”, 3rd Ed., IAHR Monograph, Balkema, Rotterdam, The Netherlands.
19. Tsujimoto, T., and T. Kitamura, (1995) “Lateral bed-load transport and sand-ridge formation near vegetation zone in open channel.” J. Hydroscience and Hydraulic Engineering, JSCE, 13(1), 35–45.
20. Vionnet, C. A., J. P. and P. A. Martín Vide Tassi, (2004) “Estimates of flow resistance and eddy viscosity coefficients for 2D modelling on vegetated floodplains.” Hydrological Processes, 18, 2907–2926.
21. Wu, W., F. D. Jr. Shields, S. J. Bennett, and S. S. Y. Wang, (2005). “A depth-averaged two-dimensional model for flow, sediment transport, and bed topography in curved channels with riparian vegetation.” Water Resou. Res., 41, 1-15.
22. 台灣省水利局(1981),「高屏溪治理規劃報告」,台灣省水利局。
23. 石武融 (2007),「透水性筐網圓柱之流場試驗研究」,國立成功大學水利及海洋工程研究所碩士論文。
24. 朱宏翊 (2007),「筐網群結構物對橋墩沖刷保護效果之研究」,國立成功大學水利及海洋工程研究所碩士論文。
25. 何宗浚 (2000),「應用PIV 與FLDV 於低雷諾數下鈍形體來流端穩態馬蹄型渦流特性之探討」,中興大學土木工程研究所碩士論文。
26. 吳虹邑 (2005),「筐網結構物對橋墩沖刷保護之研究」,國立成功大學水利及海洋工程研究所碩士論文。
27. 呂珍謀、詹勳全、黃偉哲(2008),「河道植生群型態對水流之影響」中華水土保持學報,第39 期,pp.95~107。
28. 洪勝榮、張三郎、黃進坤、洪丕振、徐立昌 (2006),「筐網結構物對凹岸沖刷保護現地測試探討」,水利,第16 期,pp.97~103。
29. 陳宴民(2008) ,「以透水性筐網圓柱保護提岸之案例研究」,逢甲大學水利工程與資源保育研究所碩士論文。
30. 黃明興(1993),「筐網倒伏對水流阻力影響之研究」,國立台灣大學生物環境系統工程學系碩士論文。
31. 黃進坤 (2004),「用來減緩水流沖刷之導流裝置」,中華民國發明專利第158884 號。
32. 黃宇軒, (2005),「彩色質點影像測速法於筐網渠道流場之試驗研究」,國立交通大學土木學系碩士論文。
33. 黃進坤 (2006),「橋墩保護新工法之研究」,台灣公路工程,第32卷第8 期,pp.39~44。
34. 黃進坤、徐立昌 (2007),「橋墩保護工法之新概念」,台灣公路工程,第33 卷, 第5 期,pp.39~49。
35. 黃進坤、許少華、潘俊弘、陳宴民 (2008),「以透水性筐網圓柱保護提案之案例研究」,第十七屆水利工程研討會
36. 黃怡仁 (2009),「直排筐網群樁於渠道中之沖淤現象」,國立成功大學水利及海洋工程研究所碩士論文。
37. 游新福、黃宏斌(1992),「筐網渠道阻力系數之研究」,台灣水利,第四十卷,第四期,第50-59頁
38. 傅家揚 (2006),「筐網結構物在不同水流攻角對橋墩沖刷保護之影響」,國立成功大學水利及海洋工程研究所碩士論文。
39. 經濟部水利署第七河川局(2002),「高屏溪治理規劃檢討-水文分析檢討報告」,經濟部水利署。
40. 經濟部水利署第七河川局(2009),「高屏溪流域整治綱要計畫」,經濟部水利署。
41. 經濟部水利署第七河川局(2009) 「高屏溪本流沖刷機制及防護新工法之研究」,經濟部水利署。
42. 鄭聰信 (2007),「橋墩沖刷保護機構之現地實驗與探討」,國立成功大學水利及海洋工程研究所碩士論文。
43. 賴丁甫、張三郎、黃進坤、洪丕振、徐立昌 (2007),「成功筐網對凹岸沖刷保護之成效」,第十屆海峽兩岸多沙河川整治與管理研討會。