簡易檢索 / 詳目顯示

研究生: 黃暐庭
Huang, Wei-Ting
論文名稱: 二氧化鈦搭配過氧化氫在UV-LED系統下對微囊藻細胞及毒素破壞之研究
Degradation of Microcystis aeruginosa cells and microcystins in the system of titanium dioxide and hydrogen peroxide under UV-LED condition
指導教授: 林財富
Lin, Tsair-Fuh
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 131
中文關鍵詞: 二氧化鈦過氧化氫氫氧自由基紫外光發光二極體微囊藻微囊藻毒射頻濺鍍
外文關鍵詞: TiO2, H2O2, ・OH, UV-LED, Microcystis, microcystins, RF sputtering
相關次數: 點閱:160下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要探討水源中常見的藍綠菌在二氧化鈦/過氧化氫/UV-LED系統下,藻細胞破損程度及細胞內代謝物釋出和降解之相關性,研究中以具產毒能力之銅綠微囊藻(Microcystis aeruginosa)為代表藍綠菌,觀察微囊藻於氧化過程中細胞完整性和活性的變化,以及後續微囊藻毒(microcystins)釋出及降解的情形,並以Delayed Chick-Watson model以及Modified Chick-Watson model進行模式模擬,以瞭解微囊藻於此系統中受影響的程度及水體中藻毒濃度之變化。
    實驗主要分為兩部分,第一部分以不同濃度(20 mg/L、10 mg/L)的粉狀二氧化鈦作為光催化劑,搭配相同濃度(10 mg/L)過氧化氫,在UV-LED燈催化下進行氧化實驗,並偵測及模擬微囊藻細胞完整性、細胞活性和水體中的毒素變化。研究中分別就二氧化鈦、過氧化氫、氫氧自由基以及紫外光等因子對於微囊藻細胞完整性和細胞活性進行分析,結果發現過氧化氫、氫氧自由基及二氧化鈦濃度為影響細胞破裂時間的主要因子,細胞活性部分則是受細胞破裂時間、紫外光照射情形以及藻細胞本身健康狀態影響,而較低濃度的氫氧自由基(10^(-14~-15)M)單獨存在無法影響藻細胞的完整性及活性,但氫氧自由基在研究中為降解微囊藻毒素的主要因子,越高的氫氧自由基濃度降解藻毒的效果越佳。在濃度較高的二氧化鈦(20 mg/L)實驗組別中,產生之氫氧自由基濃度卻略低於較低濃度之二氧化鈦(10 mg/L),因二氧化鈦粉末於溶液中有遮光的效果,深層的二氧化鈦能接收到的紫外光強度明顯低於溶液表層,以致於二氧化鈦濃度並非與氫氧自由基產率呈現正比關係。針對細胞破裂模式分析,兩種模式中以Delayed Chick-Watson model最能有效模擬細胞完整性的動力模式,且於代入微囊藻毒釋出及降解之推估模式後,Delayed Chick-Watson model搭配k・OH,MC代入2.3*10^10 (M*s)^(-1)時,能最合理描述與預測水樣中不同時間的微囊藻毒變化。
    實驗第二部分測試以固定化二氧化鈦取代粉狀二氧化鈦,搭配與粉狀二氧化鈦系統相同濃度之過氧化氫(10 mg/L),觀察在UV-LED系統下氫氧自由基的產率以及對微囊藻細胞之影響。本研究使用之固定化二氧化鈦為射頻濺鍍沉積之薄膜,膜厚為100 nm、薄膜面積約為18 cm^2、粗糙度2.89 nm。測試結果發現,二氧化鈦薄膜於UV-LED系統下之氫氧自由基產率明顯低於粉狀二氧化鈦,推測原因為固定化後之二氧化鈦接觸表面積遠小於粉狀二氧化鈦,無法有效地將產出之自由基接觸水體內物質,若要增強光催化效果,需往尋找薄膜臨界厚度、加大薄膜面積的方向進行改良。
    本研究對細胞完整性與藻毒釋出與降解及動力模式模擬之結果,可供二氧化鈦搭配過氧化氫應用於自然水體藻類控制之參考,並提供UV-LED燈應用於光催化系統之資訊。

    Effect of TiO2 and H2O2 on Microcystis aeruginosa and the degradation of microcystins (MCs) under UV-LED light illumination was investigated. The study is divided into two parts. In the first part, the powder TiO2 was used as photocatalyst, and it is one of the sources to produce hydroxyl radical (・OH). As the powder TiO2 may block the light penetration into deeper water, higher dose of TiO2 applied did not lead to higher production of ・OH. Four main factors namely TiO2, H2O2, ・OH, and UV-LED light were examined individually for their effects on cell integrity and cell activity of Microcystis. It was observed that the H2O2 may significantly reduce the cell integrity and cell activity of Microcystis. Low concentration of ・OH produced in the experiments (10^(-14~-15)M) is not able to rupture the cells, but it can increase the rupture rates caused by H2O2. Results of MCs concentration in the system indicate that ・OH is crucial for the degradation of MCs released from ruptured cells, and higher concentrations of ・OH resulted in higher degradation rates of MCs. A sequential model, including one sub-model to simulate the kinetics for cell integrity of Microcysis, and another one to describe the release and degradation of MCs, was developed in this study. Among the commonly used models for describing cell rupture, the Delayed Chick-Watson model gave best simulation for the change of cell integrity over time, and after combining with the degradation model for MCs in water, it is able to predict the observed concentration of MCs in the water.
    In the second part, TiO2 thin film produced by RF sputtering system was used as photocatalyst. Because of the low surface area, the concentration of ・OH is very low in this system. Therefore, increasing the thinkness and the dosage of TiO2 film is suggested to be included in future study for better efficiency for ・OH production.

    摘要 I Extended Abstract III 致謝 VII 目錄 IX 表目錄 XI 圖目錄 XII 第一章 緒論 1 1-1 研究源起 1 1-2 研究目的 3 第二章 文獻回顧 4 2-1 藍綠菌及其代謝物 4 2-1-1 藍綠菌之代謝物 4 2-1-2 微囊藻毒素 7 2-2 去除微囊藻細胞及毒素之方法 9 2-2-1 去除微囊藻細胞及毒素之方法介紹 9 2-2-2 氧化作用對藻體破壞之影響因子 12 2-2-3 高級氧化技術(AOPs) 13 2-2-4 氫氧自由基氧化降解微囊藻毒素之機制 15 2-3 光觸媒應用原理 16 2-3-1 半導體光觸媒介紹及其反應機構 16 2-3-2 二氧化鈦結構及光觸媒特性 18 2-4 射頻薄膜濺鍍沉積法 20 2-4-1 薄膜沉積理論 20 2-4-2 射頻濺鍍系統(RF sputtering system) 23 2-5 水溶液中自由基之量測 25 2-5-1 化學探針法 (chemical probe method) 26 2-5-2 二氧化鈦光催化系統之氫氧自由基濃度量測法 26 2-6 螢光染色於藻體觀察之應用 28 2-6-1 螢光染劑 28 2-6-2 流式細胞儀 30 第三章 實驗設備與方法 32 3-1 研究架構 32 3-2 藍綠菌之準備 36 3-2-1 藍綠菌之來源 36 3-2-2 藍綠菌培養方法 36 3-2-3 藍綠菌計數方法 38 3-3 二氧化鈦薄膜製備 40 3-3-1 共濺鍍系統 40 3-3-2 濺鍍流程 41 3-4 薄膜吸收光譜分析方法 44 3-5 氧化實驗方法 45 3-5-1 氧化實驗藻體準備 45 3-5-2 氧化實驗 45 3-6 全波長光源強度量測 50 3-7 化學探針分析 51 3-8 藍綠菌細胞完整性、活性觀察 52 3-9 微囊藻毒素分析 54 第四章 結果與討論 57 4-1 先導實驗 57 4-1-1 光源特性測試 57 4-1-2 分析方法可行性測試 58 4-1-3 背景液影響測試 61 4-2 TiO2粉末及H2O2對微囊藻細胞之影響 65 4-2-1 TiO2粉末對微囊藻細胞之影響 65 4-2-2 H2O2對微囊藻細胞之影響 68 4-2-3 TiO2粉末及H2O2對微囊藻細胞之影響 72 4-2-4 暗系統實驗結果綜合比較 75 4-3 UV-LED系統對微囊藻細胞之影響 77 4-3-1 紫外光對微囊藻細胞之影響 77 4-3-2 TiO2粉末/UV-LED系統對微囊藻細胞之影響 80 4-3-3 H2O2/UV-LED系統對微囊藻細胞之影響 83 4-3-4 TiO2粉末/H2O2/UV-LED系統對微囊藻細胞之影響 88 4-3-5 各系統實驗結果綜合討論 95 4-4 光催化系統之動力模擬 99 4-4-1 細胞完整性動力模式模擬 99 4-4-2 微囊藻毒釋出及降解之動力模擬 103 4-5 固定化二氧化鈦薄膜光催化系統 110 4-5-1 二氧化鈦薄膜全波長吸收光譜比較 110 4-5-2 TiO2薄膜/UV-LED系統 112 4-5-3 TiO2薄膜/H2O2/UV-LED系統 114 第五章 結論與建議 116 5-1 結論 116 5-2 建議 118 參考文獻 119

    Aguedach, A., Brosillon, S., Morvan, J. and Lhadi E.K. Influence of ionic strength in the adsorption and during photocatalysis of reactive black 5 azo dye on TiO2 coated on non woven paper with SiO2 as a binder. Journal of Hazardous Materials 150, 250-256. (2008)
    Andreozzi, R., Caprio, V., Insola, A. and Martota, R. Advanced oxidation proceses(AOP) for water purification and recovery. Catalysis Today 53, 51-59. (1999).
    Arslan, I., Balcioǧlu, I.A. and Bahnemann, D.W. Advanced chemical oxidation of reactive dyes in simulated dyehouse effluents by ferrioxalate- Fenton/UV-A and TiO2 /UV-A processes. Dyes and Pigments 47(3), 207- 218.(2000)
    Barrington, D.J., Ghadouani, A. and Ivey, G.N. Environmental factors and the application of hydrogen peroxide for the removal of toxic cyanobacteria from waste stabilization ponds. Journal of Environmental Engineering-Asce 137(10), 952-960. (2011)
    Benet, M. and Stauber, J. Rapid flow cytometric method for the assessment of toxic dinoflagellate cyst viability. Marine enbironmental research 62(4), 247-260. (2006)
    Boulos, L., Prévost, M., Barbeau, B., Coallier, J. and Desjardins, R. LIVE/DEAD○RBacLightTM:application of a new rapid staining method for direct enumeration of viable and total bacteria in drinking water. Journal of Microbiological Methods 37(1),77-86. (1999)
    Breeuwer, P., Drocourt, J.L., Bunschoten, N., Zwietering, M.H., Rombouts, F.M. and Abee, T. Characterization of uptake and hydrolysis of fluorescein diacetate and carboxyfluorescein diacetate by intracellular esterases in Saccharomyces cerevisiae, which result in accumulation of fluorescent product. Applied and Environmental Microbilolgy 61(4), 1614-1619. (1995)
    Brezonik, P.L. and Fulkerson-Brekken, J. Nitrate-induced photolysis in natural 2aters:controls on concentrations of hydroxyl radical photoIntermediates by natural scavenging agents. Environmental Science & Technology 32(19), 3004-3010. (1998)
    Carey, J.H. An introduction to advanced oxidation processes(AOP) for destruction of organics in wastewater. Water Pollution Research Journal of Canada 27(1), 1-21. (1992)
    Chapman, B. Glow discharge processes. John Wiley and Sons, New York, 106-109. (1980)
    Chatterjee, D. and Dasgupta, S. Visible light induced photocatalytic degradation of organic pollutants. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 6(2-3), 186-205. (2005)
    Chen, H.Y., Zahraa, O. and Bouchy, M. Inhibition of the adsorption and photocatalytic degradation of an organic contaminant in an aqueous suspension of TiO2 by inorganic ions. Journal of Photochemistry and Photobiology A: Chemistry 108(1), 37-44. (1997)
    Cheung, M., Liang, S. and Lee, J. Toxin-producing cyanobacteria in freshwater:A review of the problems, impact on drinking water safety, and efforts for protecting public health. Journal of Microbiology, 51(1), 1-10. (2013)
    Chick, H. An investigation of the laws of disinfection. Journal of Hygiene 8(1), 92-158. (1908)
    Cho, M., Chung, H.M. and Yoon, J. Disinfection of water containing natural organic matter by using ozone-initiated radical reactions. Applied and Environmental Microbiology 69(4), 2284-2291. (2003)
    Cho, M., Chung, H., Choi, W. and Yoon, J. Linear correlation between inactivation of E. coli and OH radical concentration in TiO2 photocatalytic disinfection. Water Research 38(4), 1069-1077. (2004)
    Chorus, I. and Bartram, J. Toxic cyanobacteria in water:A guide to their public health consequences, monitoring and management. E & FN Spon, London and New York. (1999)
    Chow, C.W.K, Drikas, M., House, J., Burch, M.D. and Velzeboer, R.M.A. The impact of conventional water treatment processes on cells of the cyanobacterium Microcystis aeruginosa. Water Research 33, 3253-3262. (1999)
    Chrzanowski, T.H., Crotty, R.D., Hubbard, J.G. and Welch, R.P. Applicability of the fluorescein diacetate method of detecting active bacteria in freshwater. Microbial Ecology 10(2), 179-185. (1984)
    Dalai, S., Pakrashi, S., Kumar, R.S.S., Chandrasekaran, N. and Mukherjee, A. A comparative cytotoxicity study of TiO2 nanoparticles under light and dark conditions at low exposure concentrations. Toxicology Research 1(2), 116-130. (2012)
    Daly, R.I., Ho, L. and Brookes, J.D. Effect of chlorination on Microcystis aeruginosa cell integrity and subsequent microcystin release and degradation. Environmental Science & Technology 41(12), 4447-4453. (2007)
    Dannenberg, R. and Greene, P. Reactive sputter deposition of titanium dioxide. Thin Solid Gilms 360, 122-127. (2000)
    Daper, J., Tither, K. and Edwards, C. Rapid assessment of bacterial viability by flow cytometry. Applied microbiology and biotechnology 38(2), 268-272. (1992)
    Dawson, R.M. The toxicology of microcystins. Toxicon 36(7), 953-962. (1998)
    De Laat, J. and Gallard, H. Catalytic decomposition of hydrogen peroxide by Fe(III) in homogeneous aqueous solution:Mechanism and kinetic modeling. Environmental Science & Technology 33(16), 2726-2732. (1999)
    Delgiorgio, P.A., Prairie, Y.T. and Bird, D.G., Coupling between ratesof bacterial production and the abundance of metabolically active bacteria inlakes, enumerated using CTC reduction and flow cytometry. Microbial Ecology 34, 144-154. (1997)
    Ding, J., Shi, H., Timmons, T. and Adams, C. Release and removal of microcystins from microcystis during Oxidative-, Physical-, and UV-based disinfection. Journal of Environmental Engineering 136(1), 2-11. (2010)
    Diper, J.P., Tither, K. and Edwards, C. Rapid assessment of bacterial viability by flow cytometry. Applied Microbiology and Biotechnology 38(2), 268-272. (1992)
    Dorsey, J., Yentsch, C.M., Mayo, S. and McKenna, C. Rapid analytical technique for the assessment of cell metabolic actibity in marine microalgae. Cytometry 10(5), 622-628. (1989)
    Drábková, M.,Admiraal, W. and Maršálek, B. Combined exposure to hydrogen peroxide and light selective effects on cyanobacteria, green algae, and diatoms. Environmental science & technology 41(1), 309-314. (2007a)
    Drábková, M., Matthijs, H., Admiraal, W. and Maršálek, B. Selective effects of H2O2 on cyanobacterial photosynthesis. Photosynthetica 45(3), 363-369. (2007b)
    Duhamel, S. and Jacquet, S. Flow cytometric analysis of bacteria-and virus-like particles in lake sediments. Journal of Microbiological Methods 64(3). 316-332.(2006)
    Elovitz, M.S. and von Gunten, U. Hydroxyl radical/ozone ratios during ozonation processes. I. The Rct concept. Ozone: Science & Engineering 21(3), 239-260. (1999)
    Esplugas, S., Giménez, J., Contreras, S., Pascual, E. and Rodríguez, M. Comparison of different advanced oxidation processes for phenol degradation. Water Research 36(4), 1034-1042. (2002)
    Fan, J., Hobson, P., Ho, L., Daly, R. and Brookes, J. The effects of various control and water treatment processes on the membrane integrity and toxin fate of cyanobacteria. Journal of hazardous materials, 264, 313-322. (2014)
    Feitz, A.J., Waite, T.D., Jones, G.J., Boyden, B.H. and Orr, P.T. Photocatalytic degradation of the blue green algal toxin Microcystin-LR in a natural organic-aqueous matrix. Environmental Science & Technology 33(2), 243-249. (1999)
    Fossey, J., Lefort, D. and Sorba, S. Free radicals in organic chemistry. John Wiley & Sons. (1995)
    Fotiou, T., Triantis, T.M. Kaloudis, T. and Hiskia, A. Evaluation of the photocatalytic activity of TiO2 based catalysts for the degradation and mineralization of cyanobacterial toxins and water off-odor compounds under UV-A, solar and visible light. Chemical Engineering Journal 261(0),17-26.(2015a)
    Fujishima, A. and Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38. (1972)
    Funari, E. and Testai, E. Human health risk assessment related to cyanotoxins exposure. Critical Reviews in Toxicology 38(2), 97-125. (2008)
    Gajdek, J., Beata Bober, Ewa Latkowska and Jan Bialczyk. Sensitised decomposition of Microcystin-LR using UV radiation. Journal of Photochemistry and Photobiology B:Biology 76(1-3), 103-6. (2004)
    García-Villada, L., Rico, M., Altamirano, M.A., Sánchez-Martín, L., López-Rodas, V. and Costas, E. Occurrence of copper resistant mutants in the toxic cyanobacteria Microcystis aeruginosa:characterisation and future implications in the use of copper sulphate as algaecide. Water Research 38(8), 2207-2213. (2004)
    Glaze, W.H., Kwang, J.W. and Chapin, D.H. Chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation. Ozone Science and Engineering 9, 335-352. (1987)
    Gregory, R. and Zabel, T. Water quality and treatment:A handbook of community water supplies. American Water Works Association, McGraw-Hill, New York. (1990)
    Haag, W.R. and Yao, C.C. Rate constants for reaction of hydroxyl radicals with several drinking water contaminants. Environmental Science & Technology 26(5), 1005-1013. (1992)
    Haji, S., Benstaali, B. and Al-Bastaki, N. Degradation of methyl orange by UV/H2O2 advanced oxidation process. Chemical Engineering Journal 168(1), 134-139. (2011)
    Hashimoto, K. Irie, H. and Fujishima, A. TiO2 photocatalysis a historical overview and future prospects. Japanese Journal of applied Physics-Invited Review Paper 44(12), 8269-8285. (2005)
    Haugland, R.P. Handbook of fluorescent probes and research products, molecular probes eugene, OR. (1996)
    Hernández, M., Macia, M., Padilla, C. and Del Campo, F.F. Modulation of human polymorphonuclear leukocyte adherence by cyanopeptide toxins. Environmental Research 84(1), 64-68. (2000)
    Hitzfeld, B.C., Hoger, S.J. and Dietrich, D.R. Cyanobacterial toxins:removal during drinking water treatment, and human risk assessment. Environmental Health Perspectives 108, 113-122. (2000)
    Hobbie, J.E., Dayley, R.J. and Jasper, S. Use of nucleopore filters for counting bacteria by fluorescence microscopy. Applied and Environmental Microbiology 33, 1225-1228. (1977)
    Hoffmann, M.R., Martin, S.T., Choi, W. and Bahnemannt, D.W. Environmental applications of semiconductor photocatalysis. Chemical Reviews 95, 69-96. (1995)
    Hofstadler K., Bauer, R., Novalic S. and Heisler, G. New reactor design for photocatalytic wastewater treatment with TiO2 immobilized on fused-silica glass fibers: photomineralization of 4-chlorophenol. Environmental Science & Technology 28(4), 670-674. (1994)
    Hsieh, W., Chang, D. and Lin, T. Occurrence and removal of earthy-musty odorants in two waterworks in kinmen island, Taiwan. Journal of Hazardous, Toxic, and Radioactive Waste, 18(3), 04014012. (2013)
    Hummert, C., Dahlmann, J., Reichelt, M. and Luckas, B. Analytical techniques for monitoring harmful cyanobacteria in lakes. Lakes & Reservoirs:Research & Management 6(2), 159-168. (2001)
    Huo, X., Chang, D.W., Tseng, J.H., Burch M.D. and Lin, T.F. Exposure of Microcystis aeruginosa to hydrogen peroxide under light:kinetic modeling of cell rupture and simultaneous microcystin degradation. Environmental Science & Technology 49(9), 5502-5510. (2015)
    IJpelaar, G.F., Harmsen, D.J., Beerendonk, E.F., van Leerdam, R.C., Metz, D.H., Knol, A.H., Fulmer, A. and Krijnen, S. Comparison of low pressure and medium pressure UV lamps for UV/H2O2 treatment of natural waters containing micropollutants. Ozone:Science&Engineering 32(5). 329-337. (2010)
    Ishiki, R.R., Ishiki, H.M. and Takashima, K. Photocatalytic degradation of imazethapyr herbicide at TiO2 /H2O interface. Chemosphere 58(10), 1461- 1469. (2005)
    Jančula, D. and Maršálek, B. Critical review of actually available chemical compounds for prevention and management of cyanobacterial blooms. Chemosphere 85(9), 1415-1422. (2011)
    Janzen, E.G. and Blackburn, B.J.. Detection and identification of short-lived free radicals by an electron spin resonance trapping technique. Journal of the American Chemical Society 90(21), 5909-5910. (1968)
    Jen, J.F., Leu, M.F. and Yang, T.C. Determination of hydroxyl radicals in an advanced oxidation process with salicylic acid trapping and liquid chromatography. Journal of Chromatography A 796(2), 283-288. (1998)
    Jones, G., Minatol, W., Craig, K. and Naylor, R. Removal of low level cyanobacterial peptide toxins from drinking water using powdered and granular activated carbon and chlorination-results of laboratory and pilot plant studies. Proc 15th AWWA Fed. Convert. (Aust)2, 339-346. (1993)
    Karakulski, K., Morawski, W.A. and Grzechulska, J. Purification of bilge water by hybrid ultrafiltration and photocatalytic processes. Separation and Purification Technology 14(1-3), 163-173. (1998)
    Kay, S.H., Quimby, P.C.J. and Ouzts, J.D. Hydrogen peroxide a potential algicide for aquaculture. Proceedings Southern Weed Science Society 35, 275. (1982)
    Kenneth, H.J. and Senft, J.A. An improved method to determine cel viability by simultaneous staining with fluorescein diacetate-propidium iodide. The Journal of Histochemistry and Cytochemistry 33(1), 77-79. (1985)
    Khataee, A.R. and Kasiri, M.B. Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide:Influence of the chemical structure of dyes. Journal of Molecular Catalysis A:Chemical, 328(1-2), 8-26. (2010)
    Khayyat, S.A., Selvin, R. and Roselin, L.S. Recent progress in semiconductor photocatalysis for organic fine chemical synthesis. Agricultural and Biological Sciences:Applied Photosynthesis - New Progress, Mohammad Mahdi Najafpour. (2016)
    Kim, J.H. Elovitz, M.S., Von Gunten, U., Shukairy, H.M. and Mariñas, B.J. Modeling cryptosporidium parvum oocyst inactivation and bromate in a flow-through ozone contactor treating natural water. Water Research 41(2), 467-475.(2007)
    Koenig, H. R. and Maissel, L.I. Application of RF discharges to sputtering. IBM Journal of Research and Development 14(2), 168-171. (1970)
    Kozlowsky-Suzuki, B., Wilson, A.E. and Ferro-Filho, A. Biomagnification or biodilution of microcystins in aquatic foodwebs? Meta-analyses of laboratory and field studies. Harmful Algae 18(0), 47-55. (2012)
    Kruer, W.L. The physics of laser plasma interactions. Addison-Wesley Publishing Co., US. (1998)
    Langsrud, S. and Sundheim, G. Flow cytometry for rapid assessment of viability after exposure to a quaternary ammonium compound. Journal of Applied Bacteriology 81(4), 411-418. (1996)
    Lawton, L.A., Robertson, P.K.J., Cornish, B.J.P.A. and Jaspars, M. Detoxification of microcystins (Cyanobacterial Hepatotoxins) Using TiO2 photocatalytic oxidation. Environmental Science & Technology 33(5), 771-775. (1999)
    Lee, S.Y. and Park, S.J. TiO2 photocatalyst for water treatment applications. Journal of Industrial and Engineering:Chemistry 19(6), 1761-1769. (2013)
    Li, L., Gao, N.-y., Deng, Y., Yao, J.-j, Zhang, K.-j., Yin, D.-d., Ou, H.-s. and Guo, J.-w. Experimental and model comparisons of H2O2 assisted UV photodegradation of Microcystin-LR in simulated drinking water. Journal of Zhejiang University SCIENCE A, 10(11), 1660-1669. (2009)
    Liang, H.C., Li, X.Z., Yang, Y.H., and Sze, K. H. Effects of dissolved oxygen, pH, and anions on the 2,3-dichlorophenol degradation by photocatalytic reaction with anodic TiO2 nanotube films. Chemosphere 73, 805-812. (2008)
    Lin, T.F., Chang, D.W., Lien, S.K., Tseng, Y.S., Chiu, Y.T. and Wang, Y.-S. Effect of chlorination on the cell integrity of two noxious cyanobacteria and their releases of odorants. Journal of Water Supply:Research & Technology-AQUA 58(8). (2009)
    Lindsey, M.E. and Tarr, M.E. Quantitation of hydroxyl radical during fenton oxidation following a single addition of iron and peroxide. Chemosphere 41(3), 409-417. (2000)
    Linsebigler, A.L., Lu, G., Yates, J.T., Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chemical Reviews 95(3), 735-758. (1995)
    Liu, B., Zhao, X., Zhao, Q., Li, C. and He, X. The effect of O2 partial pressure on the structure and photocatalytic property of TiO2 films prepared by sputtering. Materials Chemistry and Physics 90, 207–212. (2005).
    Ma, J. and Liu, W. Effectiveness and mechanism of potassium ferrate(VI) peroxidation for algae removal by coagulation. Water Research 36(4), 871-878. (2002a)
    Ma, M., Liu, R., Liu, H. and Qu, J. Chlorination of Microcystis aeruginosa suspension:cell lysis, toxin release and degradation. Journal of hazardous materials 217, 279-285. (2012)
    Maizels, M. and Budde, W.L. A LC/MS Method for the determination of cyanobacteria toxins in water. Analytical Chemistry 76(5), 1342-1351. (2004)
    Mamane, H., Shemer, H. and Linden, K.G. Inactivation of E. coli, B. subtilis spores and MS2, T4, and T7 phage using UV/H2O2 advanced oxidation. Journal of Hazardous Materials 146(3), 479-486. (2007)
    Martin, N., Rousselot, C., Savall, C. and Frank Palmino. Characterization and microstructure of titanium dioxide prepared by radio frequency magnetron sputtering. Thin Solid Films 287(1-2), 154-163. (1996)
    Mikula, P., Zezulka, S., Jancula, D. and Marsalek, B. Metabolic activity and membrane integrity changes in Microcystis aeruginosa - new findings on hydrogen peroxide toxicity in cyanobacteria. European Journal of Phycology 47(3), 195-206. (2012)
    Mills, A., Hill, G., Bhopal, S., Parkin, I.P. and O’Neill, S.A. Thick titanium dioxide films for semiconductor photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry 160(3), 185-194. (2003)
    Momani, F.A., Smith, D.W. and El-Din, M.G. Degradation of cyanobacteria toxin by advanced oxidation processes. Journal of Hazardous Materials 150(2), 238-249. (2008)
    Moreira-Turcq, P.F. and Martin, J.M. Characterisation of fine particles by flow cytometry in estuarine and coastal Arctic waters. Journal of Sea Research 39(3), 217-226. (1998)
    Mukherjee, D., Barghi, S. and Ray, A.K. Preparation and characterization of the TiO2 immobilized polymeric photocatalyst for degradation of aspirin under UV and solar light. Processes 2, 12-23. (2014)
    Nagaveni, K., Sivalingam, G., Hegde, M.S. and Giridhar Madras. Photocatalytic degradation of organic compounds over combustion-synthesized nano-TiO2. Environmental Science & Technology 38(5), 1600-1604. (2004)
    Nakata, K. and Fujishima, A. TiO2 photocatalysis: Design and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 13(3), 169-189. (2012)
    Neyens, E. and Baeyens, J. A review of classic Fenton’s peroxidation as an advanced oxidation technique. Journal of Hazardous Materials B98, 33–50. (2003)
    Nobuaki, N., Koji, T. and Takashi, I. Preparation of the TiO2 Thin film photocatalyst by the dip-coating process. Journal of Sol-Gel Science and Technology 13(1), 691-694. (1998)
    Ohno, T., Masaki, Y., Hirayama, S. and Matsumura, M. TiO2 photocatalyzed epoxidation of 1-decene by H2O2 under visible light. J Catal 204, 163−168. (2001)
    Ohring, M. The material science of The films., Stevens Institute of Technology, Department of Materials Science and Engineering, 109-131. Academic Press. (1992)
    Onstad, G.D., Strauch, S., Meriluoto, J., Codd, G.A. and von Gunten, U. Selective oxidation of key functional groups in cyanotoxins during drinking water ozonation. Environmental Science & Technology 41(12),4397-4404. (2007)
    Pantelić, D., Svirčev, Z., Simeunović, J., Vidović, M. and Trajković, I. Cyanotoxins:Characteristics, production and degradation routes in drinking water treatment with reference to the situation in Serbia. Chemosphere 91(4), 421-441. (2013)
    Paz, Y., Luo, Z., Rabenberg, L. and Heller, A. Photooxidative self-cleaning transparent titanium dioxide films on glass. Journal of Materials Research 10(11), 2842-2848. (1995)
    Paz, Y. and Heller, A. Photo-oxidatively self-cleaning transparent titanium dioxide films on soda lime glass: The deleterious effect of sodium contamination and its prevention. Journal of Materials Research 12(10), 2759-2766. (1997)
    Peller, J.R., Whitman, R.L., Griffith, S., Harris, P., Peller, C. and Scalzitti, J. TiO2 as a photocatalyst for control of the aquatic invasive alga, cladophora, under natural andartificial light. Journal of Photochemistry and Photobiology A:Chemistry 186(2-3), 212-217. (2007)
    Pi, Y., Schumacher, J. and Jekel, M. The use of para-chlorobenzoic Acid (pCBA) as an ozone/hydroxyl radical probe compound. Ozone:Science & Engineering 27(6), 431-436. (2005)
    Pryor, W.A. Oxy-Radicals and Related Species:Their formation, lifetimes, and reactions. Annual Review of Physiology 48, 675-667. (1986)
    Quiroz, M.A., Bandala, E.R. and Martínez-Huitle, C.A. Advanced oxidation processes (AOPs) for removal of pesticides from aqueous media. Agricultural and Biological Sciences "Pesticides - Formulations, Effects, Fate" book edited by Margarita Stoytcheva. (2011)
    Ramirez, A.M. and De Belie, N. Evaluation of the algaecide activity of titanium dioxide on autoclaved aerated concrete. Journal of Advanced Oxidation Technologies 12(1), 100-104. (2009)
    Rao, Y.F. and Chu, W. Linuron decomposition in aqueous semiconductor suspension under visible light irradiation with and without H2O2. Chemical Engineering Journal 158(2), 181-187. (2010)
    Rippka, R. Recognition and identification of cyanobacteria. Methods in Enzymology 167. 28-67. (1988)
    Rosenfeldt, E., Linden, K. and Melcher, B. UV and UV/H2O2 treatment of methylisoborneol (MIB) and geosmin in water. Aqua 54, 423-434. (2005)
    Russo, R., Curtis, E.W. and Yanong, R.P.E. Preliminary investigations of hydrogen peroxide treatment of selected ornamental fishes and efficacy against external bacteria and parasites in green swordtails. Journal of Aquatic Animal Health 19(2), 121-127. (2007)
    Sclafani, A., Herrmann, J.H. Comparison of the photoelectronic and photocatalytic activities of various anatase and rutile forms of titania in pure liquid organic phases and in aqueous solutions. The Journal of Physical Chemistry 100, 13655-13661. (1996)
    Sellers, R.M. Spectrophotometric determination of hydrogen peroxide using potassium titanium(IV) oxalate. Analyst 105(1255), 950-954. (1980)
    Sen, C., Packer, L. and Hänninen, O. Handbook of oxidants and antioxidants in exercise. Elsevier. (2000)
    Senogles, P.J., Scott, J.A., Shaw, G. and Stratton, H. Photocatalytic degradation of the cyanotoxin cylindrospermopsin, using titanium dioxide and UV irradiation. Water Research 35(5), 1245-1255. (2001)
    Sharma, V.K., Triantis, T.M., Antoniou, M.G., He, X., Pelaez, M., Han, C., Song, W., O’Shea, K.E., de la Cruz, A.A., Kaloudis, T., Hiskia, A. and Dionysiou, D.D. Destruction of microcystins by conventional and advanced oxidation processes:A review. Separation and Purification Technology 91(0), 3-17. (2012)
    Shen, W., Zhao, W., He, F. and Fang, Y. TiO2-based photocatalysis and its applications for wastewater treatment. Progress in Chemistry 10(4). (1998)
    Sigmund, P. Theory of Sputtering. I. Sputtering yield of amorphous and polycrystalline targets. Physical Review 184, 383-416. (1969)
    Smith, V.H., Tilman, G.D. and Nekola, J.C. Eutrophication:impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environmental Pollution, 100(1-3), 179-196. (1999)
    Snell, F.D. and Ettre, L.S. Encyclopedia of industrial chemical analysis. John Wiley & Sons Inc., New York, 427. (1987)
    Song, W.H., Xu, T.L., Copper, W.J., Dionysiou, D.D., De La Cruz, A.A. and O’Shea, K.E. Radiolysis studies on the destruction of Microcystin-LR in aqueous solution by hydroxyl radicals. Environmental Science & Technology 41(12), 4397-4404. (2009)
    Su, Y.L., and Deng Y.R. Microcystins in eutrophic lakes and their controlling and removing methods. Environmental Science & Technology 36(6), 62-66. (2013)
    Sunada, K., Kikuchi, Y., Hashimoto, K. and Fujishima, A. Bactericidal and detoxification effects of TiO2 thin film photocatalysts. Environmental Science & Technology 32(5), 726-728. (1998)
    Tachibana, Y., Ohsaki, H., Hayashi, A., Mitsui, A. and Hayashi, Y. TiO2-X sputter for high rate deposition of TiO2. Vacuum 59, 836-843. (2000).
    Takeda, S., Suzuki, S., Odaka, H. and Hosono, H. Photocatalytic TiO2 thin film deposited onto glass by DC magnetron sputtering. Thin Solid Films 392(2), 338-344. (2001)
    Teixeira, M.R. and Rosa, M.J. Comparing dissolved air flotation and conventional sedimentation to remove cyanobacterial cells of Microcystis aeruginosa:Part I:The key operating conditions. Separration and Purification Technology 52(1),84-94. (2006)
    USEPA. Creating a cyanotoxin target list for the unregulated contaminant monitoring rule. (2001)
    Vasconcelos, V.M., Sivonen, K., Evans, W.R., Carmichael, W.W. and Namikoshi, M. Hepatotoxic microcystin diversity in cyanobacterial blooms collected in portuguese freshwaters. Water Research 30(10), 2377-2384. (1996)
    Veldhuis, M.J., Cucci, T.L. and Sieracki, M.E. Cellular DNA content of marine phytoplankton using two new fluorochromes:Taxonomic and ecological implications1. Journal of Phycology 33(3), 527-541. (1997)
    Venables, J.A., Spiller, G.D.T. and Hanbucken, M. Nucleation and growth of thin films. Reports on Progress in Physics 47, 399-459. (1984)
    Vilhunen, S., Puton, J., Virkutyte, J. and Sillanpää, M. Efficiency of hydroxyl radical formation and phenol decomposition using UV light emitting diodes and H2O2. Environmental technology 32(8), 865-872. (2011)
    Wang, Z., Li, D., Qin, H. and Li, Y. An integrated method for removal of jarmful cyanobacterial blooms in eutrophic lakes. Environmental Pollution 160(0), 34-41. (2012)
    Watson, H.E. A note on the variation of the rate of disinfection with change in the concentration of the disinfectant. Journal of Hygiene 8(4), 536-542. (1908)
    Westrick, J., Szlag, D., Southwell, B. and Sinclair, J. A review of cyanobacteria and cyanotoxins removal/inactivation in drinking water treatment. Analytical and Bioanalytical Chemistry 397(5), 1705-1714. (2010)
    Whipple, G.C., Fair, G.M. and Whipple, M.C. The microscopy of drinking water. John Wiley & Sons Inc., New York. (1927)
    Whitton, B. and Potts, M. Ecology of cyanobacteria II. Whitton, B.A., 1-13, Springer Netherlands. (2012)
    WHO. Guidelines for Drinking-water Quality:incorporating 1st and 2nd addenda, Vol.1, Recommendations. -3rd ed. (2008)
    Yu, J.G., Yu, H.G. Cheng, B. Zhao, X.J., Yu, J.C. and Ho, W.K. The effect of calcination temperature on the surface microstructure and photocatalytic activity of TiO2 thin films prepared by liquid phase deposition. Journal of Physical Chemistary B 107(50), 13871-13879. (2003)
    Yu, J.G. TiO2 Thin film photocatalyst. Rare Metals 23(4), 289-295 (2004)
    Yuan, B.L., Qu, J.H. and Fu, M.L. Removal of cyanobacterial Microcystin-LR by ferrate oxidation-coagulation. Toxicon 40(8), 1129-1134. (2002)
    Yuan, B., Li, Y., Huang, X., Liu, H. and Qu, J. Fe(VI)-assisted photocatalytic degradating of Microcystin-LR using titanium dioxide. Journal of Photochemistry and Photobiology A:Chemistry 178(1), 106-111. (2006)
    Zamyadi, A., Fan, Y., Daly, R.I. and Prévost, M. Chlorination of Microcystis aeruginosa:Toxin release and oxidation, cellular chlorine demand and disinfection by-products formation. Water Research 47(3), 1080-1090. (2013)
    Zurawell, R.W., Chen, H., Burke, J.M. and Prepas, E.E. Hepatotoxic cyanobacteria:A review of the biological importance of microcystins in freshwater environments. Journal of Toxicology and Environmental Health B 8(1), 1-37. (2005)
    行政院環保署,民國104年環境水質監測年報。(2015)
    李中光、劉新校、陳昱峰、吳孟昌、劉佳雯, Fenton氧化法在處理生物難降解有機廢水上之應用,桃園縣大學校院產業環境技術服務團環保簡訊 12(8)。(2011)
    唐建軍、范小江、鄒原、劉愛華、張偉、周康根,H2O2在TiO2可見光催化反應中的作用機理,中國有色金屬學報 19(2)。(2009)
    許明琮,射頻磁控濺鍍法製備TiO2及TiO2-xNx光觸媒薄膜之研究,國立雲林科技大學-化學工程系碩士論文。(2005)

    郭益男,反應性射頻磁控濺鍍氧化鋅薄膜之光激發特性之研究,國立中山大學-電機工程學系碩士論文。(2004)
    張立德、牟季美,奈米材料學,遼寧科技出版社,287-365。(1994)
    張哲維,過氧化氫與二氧化鈦在可見光催化系統下對微囊藻之破壞及其毒素釋出降解之研究,國立成功大學-環境工程研究學系碩士論文。(2015)
    張德威,飲用水源中有害藻體及代謝物監測與破壞技術之研究,國立成功大學-環境工程研究學系博士論文。(2013)
    張繼彪、鄭正、楊光俊、趙永富,γ-輻照降解微囊藻毒素的研究,中國科技期刊-環境化學(卷6)。(2006)
    楊偉仁,以直流磁控及高功率脈衝磁控濺鍍之TiO2光觸媒薄膜的特性分析比較,國立交通大學機械工程學系博士論文。(2013)
    魏松煙,Characteristization of TiO2 Nanoparticles. 逢甲大學電子工程學系碩士班碩士論文。(2006)
    謝曜宇,雙氧水反應機制與污染物降解關連性探討,國立高雄第一科技大學-環境與安全衛生工程研究所學位論文。(2013)

    下載圖示 校內:2018-09-01公開
    校外:2018-09-01公開
    QR CODE