| 研究生: |
張佑民 Chang, You-Min |
|---|---|
| 論文名稱: |
Gelsolin表現對基因剔除鼠之病理表現型與腫瘤發展之影響 Effect of gelsolin expression in the pathological phenotypes of knockout mice and their implications in tumor progression |
| 指導教授: |
謝達斌
Shieh, Dar-Bin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 口腔醫學研究所 Institute of Oral Medicine |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 英文 |
| 論文頁數: | 55 |
| 外文關鍵詞: | biophysical property, gelsolin knockout mice, gelsolin, cell proliferation, atomic force microscope (AFM) |
| 相關次數: | 點閱:148 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
根據統計,2007年台灣十大惡性腫瘤中,口腔癌排名第六,每年因口腔癌而死亡的人數高達上千人。癌細胞的局部侵犯與遠端轉移,是對癌症臨床治療的最大挑戰,而侵犯與轉移都和細胞的移動能力相關,其中影響細胞移動能力的最重要因素就是細胞骨架的重組。Gelsolin 是一種細胞骨架的調控蛋白,參與肌動蛋白 (actin) 的切割或是組裝,達成細胞骨架重新排列的功能。而且gelsolin 也參與調控細胞的型態維持、分化、以及凋亡等作用。然而,gelsolin也許具有更多未知的角色以影響細胞的作用。本研究的目的是探索gelsolin基因剔除對小鼠的影響,以及gelsolin與口腔癌生長還有細胞物理性質的關係。在本實驗中,過度表現gelsolin的口腔鱗狀上皮癌細胞株SCC9被成功建立,接著利用MTT assay分析不同的gelsolin表現量對SCC9細胞增生的影響,結果顯示gelsolin會抑制細胞的增生。相似的結果也同樣呈現在另一種口腔癌細胞OEC-M1,但是在利用RNAi方式抑制gelsolin表現量的口腔癌細胞株中卻沒有明顯的差異。利用直接計算細胞數量的方式也得到類似的趨勢。為了更進一步了解這種現象是否也真實發生在生物體內,我們在SCID老鼠身上誘導不同gelsolin表現量的腫瘤,結果顯示較慢的腫瘤生長速度會伴隨較高的gelsolin表現量,與細胞實驗有一致的結果。再者,利用原子力顯微鏡觀察活細胞並直接進行測量,發現gelsolin對細胞的物理特性有影響,較低的gelsolin表現量會使細胞有較堅硬的性質。我們也研究Gelsolin基因剔除對小鼠胚胎發育以及病理表現型的影響,發現gelsolin基因剔除小鼠有較高的風險發生腫瘤,也觀察到某些幼鼠出現發育遲緩的現象,此外,在所有老鼠以及發育第九天的胚胎中沒有發現同源基因剔除的基因型,顯示gelsolin可能參與了小鼠胚胎發育以及受精的過程。
Oral cancer is the sixth causes of death in 2007 among the ten major malignancies in Taiwan. Every year it makes thousands people die. Regional invasion and distant metastasis are great challenge for clinical cancer therapy. Both processes involved cell motility. Cytoskeleton remodeling is one of the most important factors associated with cell motility. Gelsolin is a cytoskeleton regulatory protein that severs or polymerizes actin. Gelsolin was also known to regulate cell morphology, differentiation, and apoptosis. Nevertheless, gelsolin may have other unknown roles in cellular processes. This study aimed to explore gelsolin’s functions in knockout animal and investigate their implications on oral cancer growth and biophysical properties. First of all, gelsolin over expression oral squamous cell carcinoma cell line model SCC9 was established. Then the MTT assay was used to analyze cell growth of SCC9 cells with different gelsolin expression levels. The result shows that gelsolin could inhibit cell proliferation, consistent with that of the OEC-M1 cells. However, no significant difference was observed in gelsolin knockdown cell lines. Direct cell count of cancer cell growth revealed a similar trend. In vivo tumor growth in SCID mice showed an association between slower tumor growth and high gelsolin expression level, consistent with in vitro results. Furthermore, atomic force microscope (AFM) force mapping in live cultured cells discovered a significant influence of gelsolin gene expression that low gelsolin expression convert toward higher cell rigidity. The effect of gelsolin in embryonic development and pathological phenotypes were also studied in gelsolin knockout mice. The results showed an increased risk for cancer development in the knockout mice. Growth retardation in new born mice has also been observed. In addition, no homozygous knockouts could be detected in these mice or their embryos indicating that gelsolin may involve embyogenesis or fertilization process in mice.
1. Global data on incidence of oral cancer (Oral Health Programme of World Health Organization, 2005).
2. Tang, X.H., Knudsen, B., Bemis, D., Tickoo, S. & Gudas, L.J. Oral cavity and esophageal carcinogenesis modeled in carcinogen-treated mice. Clin Cancer Res 10, 301-313 (2004).
3. Fakhry, C. & Gillison, M.L. Clinical implications of human papillomavirus in head and neck cancers. J Clin Oncol 24, 2606-2611 (2006).
4. Gillison, M.L., et al. Distinct risk factor profiles for human papillomavirus type 16-positive and human papillomavirus type 16-negative head and neck cancers. J Natl Cancer Inst 100, 407-420 (2008).
5. Lader, A.S., Lee, J.J., Cicchetti, G. & Kwiatkowski, D.J. Mechanisms of gelsolin-dependent and -independent EGF-stimulated cell motility in a human lung epithelial cell line. Experimental cell research 307, 153-163 (2005).
6. Chen, C.J., You, S.L., Lin, L.H., Hsu, W.L. & Yang, Y.W. Cancer epidemiology and control in Taiwan: a brief review. Jpn J Clin Oncol 32 Suppl, S66-81 (2002).
7. Layland, M.K., Sessions, D.G. & Lenox, J. The influence of lymph node metastasis in the treatment of squamous cell carcinoma of the oral cavity, oropharynx, larynx, and hypopharynx: N0 versus N+. Laryngoscope 115, 629-639 (2005).
8. Prieto, I., Prieto, A., Bravo, M. & Bascones, A. Prognostic factors for cancer of the oral cavity. Quintessence Int 36, 711-719 (2005).
9. Thompson, C.C., et al. Pancreatic cancer cells overexpress gelsolin family-capping proteins, which contribute to their cell motility. Gut 56, 95-106 (2007).
10. Pawlak, G. & Helfman, D.M. Cytoskeletal changes in cell transformation and tumorigenesis. Curr Opin Genet Dev 11, 41-47 (2001).
11. Yin, H.L. & Stossel, T.P. Control of cytoplasmic actin gel-sol transformation by gelsolin, a calcium-dependent regulatory protein. Nature 281, 583-586 (1979).
12. Sun, H.Q., Yamamoto, M., Mejillano, M. & Yin, H.L. Gelsolin, a multifunctional actin regulatory protein. The Journal of biological chemistry 274, 33179-33182 (1999).
13. Kwiatkowski, D.J., et al. Plasma and cytoplasmic gelsolins are encoded by a single gene and contain a duplicated actin-binding domain. Nature 323, 455-458 (1986).
14. Kwiatkowski, D.J., Mehl, R. & Yin, H.L. Genomic organization and biosynthesis of secreted and cytoplasmic forms of gelsolin. The Journal of cell biology 106, 375-384 (1988).
15. Yin, H.L., Kwiatkowski, D.J., Mole, J.E. & Cole, F.S. Structure and biosynthesis of cytoplasmic and secreted variants of gelsolin. The Journal of biological chemistry 259, 5271-5276 (1984).
16. Vouyiouklis, D.A. & Brophy, P.J. A novel gelsolin isoform expressed by oligodendrocytes in the central nervous system. J Neurochem 69, 995-1005 (1997).
17. Kiselar, J.G., Janmey, P.A., Almo, S.C. & Chance, M.R. Visualizing the Ca2+-dependent activation of gelsolin by using synchrotron footprinting. Proc Natl Acad Sci U S A 100, 3942-3947 (2003).
18. McLaughlin, P.J., Gooch, J.T., Mannherz, H.G. & Weeds, A.G. Structure of gelsolin segment 1-actin complex and the mechanism of filament severing. Nature 364, 685-692 (1993).
19. Choe, H., et al. The calcium activation of gelsolin: insights from the 3A structure of the G4-G6/actin complex. J Mol Biol 324, 691-702 (2002).
20. Liepina, I., Czaplewski, C., Janmey, P. & Liwo, A. Molecular dynamics study of a gelsolin-derived peptide binding to a lipid bilayer containing phosphatidylinositol 4,5-bisphosphate. Biopolymers 71, 49-70 (2003).
21. Yu, F.X., Sun, H.Q., Janmey, P.A. & Yin, H.L. Identification of a polyphosphoinositide-binding sequence in an actin monomer-binding domain of gelsolin. The Journal of biological chemistry 267, 14616-14621 (1992).
22. Silacci, P., et al. Gelsolin superfamily proteins: key regulators of cellular functions. Cell Mol Life Sci 61, 2614-2623 (2004).
23. Laine, R.O., et al. Gelsolin, a protein that caps the barbed ends and severs actin filaments, enhances the actin-based motility of Listeria monocytogenes in host cells. Infection and immunity 66, 3775-3782 (1998).
24. Azuma, T., Witke, W., Stossel, T.P., Hartwig, J.H. & Kwiatkowski, D.J. Gelsolin is a downstream effector of rac for fibroblast motility. The EMBO journal 17, 1362-1370 (1998).
25. Cunningham, C.C., Stossel, T.P. & Kwiatkowski, D.J. Enhanced motility in NIH 3T3 fibroblasts that overexpress gelsolin. Science (New York, N.Y 251, 1233-1236 (1991).
26. Chellaiah, M., et al. Gelsolin deficiency blocks podosome assembly and produces increased bone mass and strength. The Journal of cell biology 148, 665-678 (2000).
27. Philchenkov, A.A. Caspases as regulators of apoptosis and other cell functions. Biochemistry (Mosc) 68, 365-376 (2003).
28. Kothakota, S., et al. Caspase-3-generated fragment of gelsolin: effector of morphological change in apoptosis. Science (New York, N.Y 278, 294-298 (1997).
29. Koya, R.C., et al. Gelsolin inhibits apoptosis by blocking mitochondrial membrane potential loss and cytochrome c release. The Journal of biological chemistry 275, 15343-15349 (2000).
30. Petit, P.X., et al. Implication of mitochondria in apoptosis. Mol Cell Biochem 174, 185-188 (1997).
31. Asch, H.L., et al. Widespread loss of gelsolin in breast cancers of humans, mice, and rats. Cancer Res 56, 4841-4845 (1996).
32. Kuzumaki, N., Tanaka, M., Sakai, N. & Fujita, H. [Tumor suppressive function of gelsolin]. Gan To Kagaku Ryoho 24, 1436-1441 (1997).
33. Prasad, S.C., Thraves, P.J., Dritschilo, A. & Kuettel, M.R. Protein expression changes associated with radiation-induced neoplastic progression of human prostate epithelial cells. Electrophoresis 18, 629-637 (1997).
34. Dosaka-Akita, H., et al. Frequent loss of gelsolin expression in non-small cell lung cancers of heavy smokers. Cancer Res 58, 322-327 (1998).
35. Tanaka, H., et al. siRNA gelsolin knockdown induces epithelial-mesenchymal transition with a cadherin switch in human mammary epithelial cells. Int J Cancer 118, 1680-1691 (2006).
36. Shieh, D.B., et al. Cell motility as a prognostic factor in Stage I nonsmall cell lung carcinoma: the role of gelsolin expression. Cancer 85, 47-57 (1999).
37. Thor, A.D., Edgerton, S.M., Liu, S., Moore, D.H., 2nd & Kwiatkowski, D.J. Gelsolin as a negative prognostic factor and effector of motility in erbB-2-positive epidermal growth factor receptor-positive breast cancers. Clin Cancer Res 7, 2415-2424 (2001).
38. Shieh, D.B., et al. Tissue expression of gelsolin in oral carcinogenesis progression and its clinicopathological implications. Oral Oncol 42, 599-606 (2006).
39. Witke, W., et al. Hemostatic, inflammatory, and fibroblast responses are blunted in mice lacking gelsolin. Cell 81, 41-51 (1995).
40. Crowley, M.R., Head, K.L., Kwiatkowski, D.J., Asch, H.L. & Asch, B.B. The mouse mammary gland requires the actin-binding protein gelsolin for proper ductal morphogenesis. Developmental biology 225, 407-423 (2000).
41. Becker, P.M., et al. Pulmonary vascular permeability and ischemic injury in gelsolin-deficient mice. American journal of respiratory cell and molecular biology 28, 478-484 (2003).
42. Humphris, A.D.L., Miles, M.J. & Hobbs, J.K. A mechanical microscope: High-speed atomic force microscopy. Applied Physics Letters 86, 034106 (2005).
43. Giessibl, F.J. Advances in atomic force microscopy. Reviews of Modern Physics 75, 949 (2003).
44. Eibl, R.H. & Moy, V.T. Atomic force microscopy measurements of protein-ligand interactions on living cells. Methods Mol Biol 305, 439-450 (2005).
45. Wachsberger, P.R., et al. Effect of the tumor vascular-damaging agent, ZD6126, on the radioresponse of U87 glioblastoma. Clin Cancer Res 11, 835-842 (2005).
46. Schwartz, S.B., Higgins, P.J., Rajasekaran, A.K. & Staiano-Coico, L. Gelsolin expression in normal human keratinocytes is a function of induced differentiation. Adv Exp Med Biol 358, 169-181 (1994).
47. Archer, S.K., Claudianos, C. & Campbell, H.D. Evolution of the gelsolin family of actin-binding proteins as novel transcriptional coactivators. Bioessays 27, 388-396 (2005).
48. Sagawa, N., et al. Gelsolin suppresses tumorigenicity through inhibiting PKC activation in a human lung cancer cell line, PC10. British journal of cancer 88, 606-612 (2003).
49. Yermen, B., Tomas, A. & Halban, P.A. Pro-survival role of gelsolin in mouse beta-cells. Diabetes 56, 80-87 (2007).
50. Keller, J.W., et al. Oncogenic K-RAS subverts the antiapoptotic role of N-RAS and alters modulation of the N-RAS:gelsolin complex. Oncogene 26, 3051-3059 (2007).