簡易檢索 / 詳目顯示

研究生: 顏聖哲
Yen, Sheng-Che
論文名稱: 貴金屬–金屬氧化物半導體異質結構之表面電漿共振特性與轉換效率結合機器學習法建立最佳化模組之研究
Optimal Modeling for Surface Plasmon Resonance Characteristics and Conversion Efficiency of Noble Metal/Metal Oxide Semiconductor Heterostructure using Machine Learning
指導教授: 蘇彥勳
Su, Yen-Hsun
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 110
中文關鍵詞: 金奈米粒子銀奈米粒子表面電漿共振能量轉換效率機器學習
外文關鍵詞: Gold nanoparticle, silver nanoparticle, surface plasmon resonance, energy conversion efficiency, machine learning
相關次數: 點閱:167下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 從貴金屬奈米結構如金奈米粒子引發表面電漿共振效應,用以促進高能熱電子的生成及共振能量轉移,從而顯著提高太陽光收集和能量轉換效率。本研究通過紫外光臭氧處理合成了具有貴金屬-半導體異質結構的金奈米粒子或銀奈米粒子修飾氧化鋅奈米柱。為了進一步從各個方面理解表面電漿共振效應與能量轉換效率,在此對Au @ ZnO及Ag@ ZnO奈米複合材料的吸收、光至電漿轉換效率、光電轉換效率和品質因子進行了表徵,由於表面電漿共振效應所產生的行為能通過調控實驗參數來影響結果,進而可以針對這些參數因素進行適當的調控,同時,採用了將機器學習法作為人工智能數據驅動方法的應用,建立用於評估材料的合成與性能之間關係的替代預測模組。在這方面,我們僅收集少量有限而足夠的實驗參數集及相對應的數據集作為訓練數據,並使用結合了人工神經網路與遺傳演算法來建立優化預測模組。根據實驗數據集和提出的預測模組的結果,藉由機器學習法可以有效評估Au @ ZnO及Ag@ ZnO奈米複合材料所引發的表面電漿共振效應與其相關的能量轉換效率,這可能對於電漿敏化太陽能電池及電漿雷射具有潛在的應用價值。

    The effect of surface plasmon resonance (SPR) from noble metal nanostructures such as gold nanoparticles (Au NPs) and sliver nanoparticles (Ag NPs) has been proposed to promote the generation of energetic hot electrons as well as boosting resonant energy transfer (RET), thereby resulting in significantly enhancing of the solar-light harvesting and energy-conversion efficiency. Herein Au NPs decorated zinc oxide nanorods (ZnO NRs) and Ag NPs decorated ZnO NRs with plasmonic metal-semiconductor heterostructures have been synthesized through UV/Ozone treatment. Absorption, light-to-plasmon conversion efficiency, plasmon-to-hot electron conversion efficiency and quality (Q)-factor of Au@ZnO and Ag@ZnO nanocomposites are further characterized in order to understand the related SPR effect and energy conversion efficiency from various aspects. The behavior generated from the effect of SPR can affect the results by adjusting the experimental parameters, and these parameters can also be appropriately adjusted. Simultaneously, the use of machine learning (ML) as an artificial intelligence data-driven method to derive an alternative predictive model for evaluating the relationship between synthesis and properties of materials has been adopted. In this regard, we collect only a limited supply of experimental data set as training data to establish the predictive model with an artificial neural network (ANN) incorporating genetic algorithm (GA). According to the results from experimental data sets and proposed predictive model, our analysis has revealed that the conversion efficiency and Q-factor associated with the SPR effect from Au@ZnO and Ag@ZnO nanocomposites can be efficiently evaluated through ML, which has potential application in plasmon-sensitized solar cell and plasmonic laser in the future.

    摘要 I 誌謝 XX 目錄 XXI 圖目錄 XXIII 表目錄 XXVII 第一章 緒論 1 1-1 前言 1 1-2 研究背景 3 1-3 研究動機 4 第二章 文獻回顧 5 2-1 黑體輻射與太陽輻射 5 2-2 太陽能電池 8 2-3 金屬氧化物半導體 11 2-4 表面電漿共振 14 2-5 品質因子 16 2-6 機器學習 18 2-7 人工神經網路 24 2-8 遺傳演算法 27 第三章 研究方法 30 3-1 實驗材料 30 3-1-1 實驗藥品介紹 30 3-2 實驗流程 31 3-2-1 ITO透明導電玻璃基板清洗流程 31 3-2-2 合成奈米柱狀氧化鋅方法 32 3-2-3 成長貴重金屬顆粒於奈米柱狀氧化鋅方法 34 3-2-4 太陽能電池之製備 36 3-2-5 結合人工神經網路與遺傳演算法建立最佳化模組 36 3-3 實驗分析方法 38 3-3-1 X光繞射儀 38 3-3-2 紫外-可見光分光光度計 39 3-3-3 場發射掃描式電子顯微鏡 40 3-3-4 穿透式電子顯微鏡 41 3-3-5 化學分析電子能譜儀 41 3-3-6 光電轉換效率 42 第四章 結果與討論 43 4-1 材料基本性質 43 4-1-1 材料結晶結構 43 4-1-2 材料表面型態 45 4-1-3 材料化學成分分析 49 4-2 最佳化模組建立與材料分析 52 4-2-1 人工神經網路與遺傳演算法 52 4-2-2 紫外-可見光光譜 56 4-2-3 品質因子 61 4-2-4 光至電漿轉換效率 64 4-2-5 光電轉換效率 67 4-3 自組裝貴金屬奈米粒子於金屬氧化物半導體 70 4-3-1 金奈米粒子之兩層自組裝 70 4-3-2 金銀奈米粒子之第二層自組裝 83 第五章 結論 97 第六章 參考文獻 101

    [1] E. Kabir, P. Kumar, S. Kumar, A. A. Adelodun, K.-H. Kim, Solar energy: Potential and future prospects. Renewable and Sustainable Energy Reviews, 2018. 82: p. 894-900.
    [2] J. Gong, K. Sumathy, Q. Qiao, Z. Zhou, Review on dye-sensitized solar cells (DSSCs): Advanced techniques and research trends. Renewable and Sustainable Energy Reviews, 2017. 68: p. 234-246.
    [3] Y. Tawada, K. Tsuge, M. Kondo, H. Okamoto, Y. Hamakawa, Properties and structure of a‐SiC: H for high‐efficiency a‐Si solar cell. Journal of Applied Physics, 1982. 53(7): p. 5273-5281.
    [4] D. E. Carlson, C. R. Wronski, Amorphous silicon solar cell. Applied Physics Letters, 1976. 28(11): p. 671-673.
    [5] A. W. Blakers, A. Wang, A. M. Milne, J. Zhao, M. A. Green, 22.8% efficient silicon solar cell. Applied Physics Letters, 1989. 55(13): p. 1363-1365.
    [6] M. A. Green, The path to 25% silicon solar cell efficiency: History of silicon cell evolution. Progress in Photovoltaics: Research and Applications, 2009. 17(3): p. 183-189.
    [7] A. Goetzberger, J. Knobloch, B. Voss, Crystalline silicon solar cells. New York, 1998: p. 114-118.
    [8] A. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat‐Sauvain, N. Wyrsch, U. Kroll, C. Droz, J. Bailat, Thin‐film silicon solar cell technology. Progress in photovoltaics: Research and applications, 2004. 12(2‐3): p. 113-142.
    [9] A. Shah, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, U. Graf, Material and solar cell research in microcrystalline silicon. Solar Energy Materials and Solar Cells, 2003. 78(1-4): p. 469-491.
    [10] C. Strümpel, M. Mccann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrček, C. Del Cañizo, I. Tobias, Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials. Solar energy materials and solar cells, 2007. 91(4): p. 238-249.
    [11] K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsu, H. Uzu, Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nature energy, 2017. 2(5): p. 17032.
    [12] T. L. Chu, S. S. Chu, Thin film II–VI photovoltaics. Solid-State Electronics, 1995. 38(3): p. 533-549.
    [13] L. Kazmerski, G. Sanborn, CuInS2 thin‐film homojunction solar cells. Journal of Applied Physics, 1977. 48(7): p. 3178-3180.
    [14] Y. K. Kumar, G. S. Babu, P. U. Bhaskar, V. S. Raja, Preparation and characterization of spray-deposited Cu2ZnSnS4 thin films. Solar Energy Materials and Solar Cells, 2009. 93(8): p. 1230-1237.
    [15] J. Britt, C. Ferekides, Thin‐film CdS/CdTe solar cell with 15.8% efficiency. Applied physics letters, 1993. 62(22): p. 2851-2852.
    [16] C. S. Ferekides, D. Marinskiy, V. Viswanathan, B. Tetali, V. Palekis, P. Selvaraj, D. Morel, High efficiency CSS CdTe solar cells. Thin Solid Films, 2000. 361: p. 520-526.
    [17] J. Sites, J. Pan, Strategies to increase CdTe solar-cell voltage. Thin Solid Films, 2007. 515(15): p. 6099-6102.
    [18] K. W. Mitchell, A. L. Fahrenbruch, R. H. Bube, Evaluation of the CdS/CdTe heterojunction solar cell. Journal of Applied Physics, 1977. 48(10): p. 4365-4371.
    [19] K. Durose, P. Edwards, D. Halliday, Materials aspects of CdTe/CdS solar cells. Journal of Crystal Growth, 1999. 197(3): p. 733-742.
    [20] N. Romeo, A. Bosio, V. Canevari, A. Podesta, Recent progress on CdTe/CdS thin film solar cells. Solar Energy, 2004. 77(6): p. 795-801.
    [21] A. Morales-Acevedo, Thin film CdS/CdTe solar cells: research perspectives. Solar Energy, 2006. 80(6): p. 675-681.
    [22] H. W. Schock, R. Noufi, CIGS‐based solar cells for the next millennium. Progress in Photovoltaics: Research and Applications, 2000. 8(1): p. 151-160.
    [23] J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, N.-G. Park, 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, 2011. 3(10): p. 4088-4093.
    [24] S. Hao, J. Wu, Y. Huang, J. Lin, Natural dyes as photosensitizers for dye-sensitized solar cell. Solar energy, 2006. 80(2): p. 209-214.
    [25] Y. L. Lee, Y. S. Lo, Highly efficient quantum‐dot‐sensitized solar cell based on co‐sensitization of CdS/CdSe. Advanced Functional Materials, 2009. 19(4): p. 604-609.
    [26] Z.-S. Wang, H. Kawauchi, T. Kashima, H. Arakawa, Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell. Coordination chemistry reviews, 2004. 248(13-14): p. 1381-1389.
    [27] P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi, M. Grätzel, A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte. Nature materials, 2003. 2(6): p. 402-407.
    [28] K. Keis, C. Bauer, G. Boschloo, A. Hagfeldt, K. Westermark, H. Rensmo, H. Siegbahn, Nanostructured ZnO electrodes for dye-sensitized solar cell applications. Journal of Photochemistry and photobiology A: Chemistry, 2002. 148(1-3): p. 57-64.
    [29] L. Han, A. Islam, H. Chen, C. Malapaka, B. Chiranjeevi, S. Zhang, X. Yang, M. Yanagida, High-efficiency dye-sensitized solar cell with a novel co-adsorbent. Energy & Environmental Science, 2012. 5(3): p. 6057-6060.
    [30] K. Hara, K. Sayama, Y. Ohga, A. Shinpo, S. Suga, H. Arakawa, A coumarin-derivative dye sensitized nanocrystalline TiO2 solar cell having a high solar-energy conversion efficiency up to 5.6%. Chemical Communications, 2001(6): p. 569-570.
    [31] J. Ferber, R. Stangl, J. Luther, An electrical model of the dye-sensitized solar cell. Solar Energy Materials and Solar Cells, 1998. 53(1-2): p. 29-54.
    [32] S. T. Kochuveedu, Y. H. Jang, D. H. Kim, A study on the mechanism for the interaction of light with noble metal-metal oxide semiconductor nanostructures for various photophysical applications. Chemical Society Reviews, 2013. 42(21): p. 8467-8493.
    [33] K. T. Butler, D. W. Davies, H. Cartwright, O. Isayev, A. Walsh, Machine learning for molecular and materials science. Nature, 2018. 559(7715): p. 547-555.
    [34] Y. Liu, T. Zhao, W. Ju, S. Shi, Materials discovery and design using machine learning. Journal of Materiomics, 2017. 3(3): p. 159-177.
    [35] H. Yamada, C. Liu, S. Wu, Y. Koyama, S. Ju, J. Shiomi, J. Morikawa, R. Yoshida, Predicting materials properties with little data using shotgun transfer learning. ACS central science, 2019. 5(10): p. 1717-1730.
    [36] H.-X. Huang, J.-C. Li, C.-L. Xiao, A proposed iteration optimization approach integrating backpropagation neural network with genetic algorithm. Expert Systems with Applications, 2015. 42(1): p. 146-155.
    [37] R. C. Willson, A. V. Mordvinov, Secular total solar irradiance trend during solar cycles 21–23. Geophysical Research Letters, 2003. 30(5).
    [38] K. A. Mazzio, C. K. Luscombe, The future of organic photovoltaics. Chemical Society Reviews, 2015. 44(1): p. 78-90.
    [39] L. Fara, Advanced solar cell materials, technology, modeling, and simulation. 2012: IGI Global.
    [40] H. Bae, M. Yoon, J. Kim, S. Im, Photodetecting properties of ZnO-based thin-film transistors. Applied Physics Letters, 2003. 83(25): p. 5313-5315.
    [41] K. Keis, A. Roos, Optical characterization of nanostructured ZnO and TiO2 films. Optical Materials, 2002. 20(1): p. 35-42.
    [42] V. Noack, H. Weller, A. Eychmüller, Electron transport in particulate ZnO electrodes: a simple approach. The Journal of Physical Chemistry B, 2002. 106(34): p. 8514-8523.
    [43] G. Oskam, Z. Hu, R. L. Penn, N. Pesika, P. C. Searson, Coarsening of metal oxide nanoparticles. Physical Review E, 2002. 66(1): p. 011403.
    [44] Ü. özgür, Y. I. Alivov, C. Liu, A. Teke, M. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, Morkoç, A comprehensive review of ZnO materials and devices. Journal of applied physics, 2005. 98(4): p. 11.
    [45] H. Tang, K. Prasad, R. Sanjines, P. Schmid, F. Levy, Electrical and optical properties of TiO2 anatase thin films. Journal of applied physics, 1994. 75(4): p. 2042-2047.
    [46] J.-J. Wu, G.-R. Chen, C.-C. Lu, W.-T. Wu, J.-S. Chen, Performance and electron transport properties of TiO2 nanocomposite dye-sensitized solar cells. Nanotechnology, 2008. 19(10): p. 105702.
    [47] J. B. Baxter, E. S. Aydil, Nanowire-based dye-sensitized solar cells. Applied physics letters, 2005. 86(5): p. 053114.
    [48] A. I. Hochbaum, P. Yang, Semiconductor nanowires for energy conversion. Chemical reviews, 2010. 110(1): p. 527-546.
    [49] Q. Zhang, C. S. Dandeneau, X. Zhou, G. Cao, ZnO nanostructures for dye‐sensitized solar cells. Advanced Materials, 2009. 21(41): p. 4087-4108.
    [50] G. Hodes, Semiconductor and ceramic nanoparticle films deposited by chemical bath deposition. Physical Chemistry Chemical Physics, 2007. 9(18): p. 2181-2196.
    [51] L. Vayssieres, Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Advanced Materials, 2003. 15(5): p. 464-466.
    [52] K. Govender, D. S. Boyle, P. B. Kenway, P. O'brien, Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution. Journal of Materials Chemistry, 2004. 14(16): p. 2575-2591.
    [53] S. Yamabi, H. Imai, Growth conditions for wurtzite zinc oxide films in aqueous solutions. Journal of materials chemistry, 2002. 12(12): p. 3773-3778.
    [54] Y. Lou, S. Yuan, Y. Zhao, P. Hu, Z. Wang, M. Zhang, L. Shi, D. Li, Molecular-scale interface engineering of metal nanoparticles for plasmon-enhanced dye sensitized solar cells. Dalton Transactions, 2013. 42(15): p. 5330-5337.
    [55] H. Chen, Z. Sun, W. Ni, K. C. Woo, H. Q. Lin, L. Sun, C. Yan, J. Wang, Plasmon coupling in clusters composed of two‐dimensionally ordered gold nanocubes. Small, 2009. 5(18): p. 2111-2119.
    [56] J. Homola, S. S. Yee, G. Gauglitz, Surface plasmon resonance sensors. Sensors and Actuators B: Chemical, 1999. 54(1-2): p. 3-15.
    [57] S. Eustis, M. A. El-Sayed, Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chemical society reviews, 2006. 35(3): p. 209-217.
    [58] V. Giannini, A. I. Fernández-Domínguez, S. C. Heck, S. A. Maier, Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. Chemical reviews, 2011. 111(6): p. 3888-3912.
    [59] Y.-H. Su, Y.-F. Ke, S.-L. Cai, Q.-Y. Yao, Surface plasmon resonance of layer-by-layer gold nanoparticles induced photoelectric current in environmentally-friendly plasmon-sensitized solar cell. Light: Science & Applications, 2012. 1(6): p. e14-e14.
    [60] R. Jiang, B. Li, C. Fang, J. Wang, Metal/semiconductor hybrid nanostructures for plasmon‐enhanced applications. Advanced materials, 2014. 26(31): p. 5274-5309.
    [61] V. Amendola, R. Pilot, M. Frasconi, O. M. Maragò, M. A. Iatì, Surface plasmon resonance in gold nanoparticles: a review. Journal of Physics: Condensed Matter, 2017. 29(20): p. 203002.
    [62] Y. Zhang, S. He, W. Guo, Y. Hu, J. Huang, J. R. Mulcahy, W. D. Wei, Surface-plasmon-driven hot electron photochemistry. Chemical reviews, 2017. 118(6): p. 2927-2954.
    [63] T. R. Jensen, M. D. Malinsky, C. L. Haynes, R. P. Van Duyne, Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles. The Journal of Physical Chemistry B, 2000. 104(45): p. 10549-10556.
    [64] B. J. Wiley, S. H. Im, Z.-Y. Li, J. Mclellan, A. Siekkinen, Y. Xia, Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis. 2006, ACS Publications.
    [65] L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, R. P. Van Duyne, Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms. Nano letters, 2006. 6(9): p. 2060-2065.
    [66] L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, Y. Xia, Localized surface plasmon resonance spectroscopy of single silver nanocubes. Nano letters, 2005. 5(10): p. 2034-2038.
    [67] N. Tarwal, R. Devan, Y. Ma, R. Patil, M. Karanjkar, P. Patil, Spray deposited localized surface plasmonic Au–ZnO nanocomposites for solar cell application. Electrochimica acta, 2012. 72: p. 32-39.
    [68] Q. Liu, Y. Wei, M. Z. Shahid, M. Yao, B. Xu, G. Liu, K. Jiang, C. Li, Spectrum-enhanced Au@ ZnO plasmonic nanoparticles for boosting dye-sensitized solar cell performance. Journal of Power Sources, 2018. 380: p. 142-148.
    [69] N. Chaturvedi, S. K. Swami, V. Dutta, Plasmonic effect of spray-deposited Au nanoparticles on the performance of inverted organic solar cells. Nanoscale, 2014. 6(18): p. 10772-10778.
    [70] M. Abd-Ellah, N. Moghimi, L. Zhang, J. P. Thomas, D. Mcgillivray, S. Srivastava, K. T. Leung, Plasmonic gold nanoparticles for ZnO-nanotube photoanodes in dye-sensitized solar cell application. Nanoscale, 2016. 8(3): p. 1658-1664.
    [71] I. Iwantono, S. K. M. Saad, F. Anggelina, A. Awitdrus, M. A. Ramli, A. A. Umar, Enhanced charge transfer activity in Au nanoparticles decorated ZnO nanorods photoanode. Physica E: Low-dimensional Systems and Nanostructures, 2019. 111: p. 44-50.
    [72] Z. Chen, Y. Tang, C. Liu, Y. Leung, G. Yuan, L. Chen, Y. Wang, I. Bello, J. Zapien, W. Zhang, Vertically aligned ZnO nanorod arrays sentisized with gold nanoparticles for Schottky barrier photovoltaic cells. The Journal of Physical Chemistry C, 2009. 113(30): p. 13433-13437.
    [73] P. K. Jain, X. Huang, I. H. El-Sayed, M. A. El-Sayed, Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Accounts of chemical research, 2008. 41(12): p. 1578-1586.
    [74] S. a. Pillai, M. Green, Plasmonics for photovoltaic applications. Solar Energy Materials and Solar Cells, 2010. 94(9): p. 1481-1486.
    [75] V. Garg, B. S. Sengar, V. Awasthi, P. Sharma, C. Mukherjee, S. Kumar, S. Mukherjee, Localized surface plasmon resonance on Au nanoparticles: tuning and exploitation for performance enhancement in ultrathin photovoltaics. RSC advances, 2016. 6(31): p. 26216-26226.
    [76] D. Gaspar, A. Pimentel, T. Mateus, J. Leitao, J. Soares, B. Falcao, A. Araújo, A. Vicente, S. Filonovich, H. Aguas, Influence of the layer thickness in plasmonic gold nanoparticles produced by thermal evaporation. Scientific reports, 2013. 3: p. 1469.
    [77] K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. 2003, ACS Publications.
    [78] E. A. Coronado, E. R. Encina, F. D. Stefani, Optical properties of metallic nanoparticles: manipulating light, heat and forces at the nanoscale. Nanoscale, 2011. 3(10): p. 4042-4059.
    [79] X. Li, T. Chen, Y. Liu, K. Leong, Influence of localized surface plasmon resonance and free electrons on the optical properties of ultrathin Au films: a study of the aggregation effect. Optics express, 2014. 22(5): p. 5124-5132.
    [80] K. A. Willets, R. P. Van Duyne, Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem., 2007. 58: p. 267-297.
    [81] J. Vuckovic, M. Loncar, H. Mabuchi, A. Scherer, Optimization of the Q factor in photonic crystal microcavities. IEEE Journal of Quantum Electronics, 2002. 38(7): p. 850-856.
    [82] C.-Y. Lu, S. L. Chuang, A surface-emitting 3D metal-nanocavity laser: proposal and theory. Optics Express, 2011. 19(14): p. 13225-13244.
    [83] M. Noginov, G. Zhu, A. Belgrave, R. Bakker, V. Shalaev, E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner, Demonstration of a spaser-based nanolaser. Nature, 2009. 460(7259): p. 1110-1112.
    [84] N. I. Zheludev, S. Prosvirnin, N. Papasimakis, V. Fedotov, Lasing spaser. Nature photonics, 2008. 2(6): p. 351-354.
    [85] G. Lilley, M. Messner, K. Unterrainer, Improving the quality factor of the localized surface plasmon resonance. Optical Materials Express, 2015. 5(10): p. 2112-2120.
    [86] J. Y. Suh, C. H. Kim, W. Zhou, M. D. Huntington, D. T. Co, M. R. Wasielewski, T. W. Odom, Plasmonic bowtie nanolaser arrays. Nano letters, 2012. 12(11): p. 5769-5774.
    [87] B. Tandon, A. Yadav, D. Khurana, P. Reddy, P. K. Santra, A. Nag, Size-induced enhancement of carrier density, LSPR quality factor, and carrier mobility in Cr–Sn doped In2O3 Nanocrystals. Chemistry of Materials, 2017. 29(21): p. 9360-9368.
    [88] H. T. Chorsi, Y. Lee, A. Alù, J. X. Zhang, Tunable plasmonic substrates with ultrahigh Q-factor resonances. Scientific reports, 2017. 7(1): p. 1-9.
    [89] S. D. Lounis, E. L. Runnerstrom, A. Llordes, D. J. Milliron, Defect chemistry and plasmon physics of colloidal metal oxide nanocrystals. The journal of physical chemistry letters, 2014. 5(9): p. 1564-1574.
    [90] B. Tandon, S. Ghosh, D. J. Milliron, Dopant selection strategy for high-quality factor localized surface plasmon resonance from doped metal oxide nanocrystals. Chemistry of Materials, 2019. 31(18): p. 7752-7760.
    [91] M. I. Stockman, Spasers explained. Nature Photonics, 2008. 2(6): p. 327-329.
    [92] S. Russell, P. Norvig, Artificial intelligence: a modern approach. 2002.
    [93] L. Ward, A. Agrawal, A. Choudhary, C. Wolverton, A general-purpose machine learning framework for predicting properties of inorganic materials. npj Computational Materials, 2016. 2: p. 16028.
    [94] G. Pilania, C. Wang, X. Jiang, S. Rajasekaran, R. Ramprasad, Accelerating materials property predictions using machine learning. Scientific reports, 2013. 3(1): p. 1-6.
    [95] Y.-J. Wu, L. Fang, Y. Xu, Predicting interfacial thermal resistance by machine learning. npj Computational Materials, 2019. 5(1): p. 56.
    [96] B. A. Moore, E. Rougier, D. O’malley, G. Srinivasan, A. Hunter, H. Viswanathan, Predictive modeling of dynamic fracture growth in brittle materials with machine learning. Computational Materials Science, 2018. 148: p. 46-53.
    [97] N. Kireeva, I. Baskin, H. Gaspar, D. Horvath, G. Marcou, A. Varnek, Generative topographic mapping (GTM): universal tool for data visualization, structure‐activity modeling and dataset comparison. Molecular informatics, 2012. 31(3‐4): p. 301-312.
    [98] F. A. Faber, L. Hutchison, B. Huang, J. Gilmer, S. S. Schoenholz, G. E. Dahl, O. Vinyals, S. Kearnes, P. F. Riley, O. A. Von Lilienfeld, Prediction errors of molecular machine learning models lower than hybrid DFT error. Journal of chemical theory and computation, 2017. 13(11): p. 5255-5264.
    [99] M. Rupp, A. Tkatchenko, K.-R. Müller, O. A. Von Lilienfeld, Fast and accurate modeling of molecular atomization energies with machine learning. Physical review letters, 2012. 108(5): p. 058301.
    [100] D. J. Hand, K. Yu, Idiot's Bayes—not so stupid after all? International statistical review, 2001. 69(3): p. 385-398.
    [101] G. Shakhnarovich, T. Darrell, P. Indyk, Nearest-neighbor methods in learning and vision. 2006: MIT press, Cambridge.
    [102] L. Rokach, O. Maimon, Classification trees, in Data mining and knowledge discovery handbook. 2009, Springer. p. 149-174.
    [103] J. Shawe-Taylor, N. Cristianini, Kernel methods for pattern analysis. 2004: Cambridge university press.
    [104] J. Schmidhuber, Deep learning in neural networks: An overview. Neural networks, 2015. 61: p. 85-117.
    [105] Y. Bengio, Learning deep architectures for AI. Foundations and trends® in Machine Learning, 2009. 2(1): p. 1-127.
    [106] Y. Bengio, A. Courville, P. Vincent, Representation learning: A review and new perspectives. IEEE transactions on pattern analysis and machine intelligence, 2013. 35(8): p. 1798-1828.
    [107] Y. Lecun, Y. Bengio, G. Hinton, Deep learning. nature, 2015. 521(7553): p. 436-444.
    [108] L. Deng, D. Yu, Deep learning: methods and applications. Foundations and trends in signal processing, 2014. 7(3–4): p. 197-387.
    [109] K. Fukushima, Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological cybernetics, 1980. 36(4): p. 193-202.
    [110] G. E. Hinton, Learning multiple layers of representation. Trends in cognitive sciences, 2007. 11(10): p. 428-434.
    [111] M. H. Segler, M. P. Waller, Neural‐symbolic machine learning for retrosynthesis and reaction prediction. Chemistry–A European Journal, 2017. 23(25): p. 5966-5971.
    [112] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, G. E. Dahl. Neural message passing for quantum chemistry. in Proceedings of the 34th International Conference on Machine Learning-Volume 70. 2017. JMLR. org.
    [113] D. Jha, L. Ward, A. Paul, W.-k. Liao, A. Choudhary, C. Wolverton, A. Agrawal, Elemnet: Deep learning the chemistry of materials from only elemental composition. Scientific reports, 2018. 8(1): p. 1-13.
    [114] A. Ziletti, D. Kumar, M. Scheffler, L. M. Ghiringhelli, Insightful classification of crystal structures using deep learning. Nature communications, 2018. 9(1): p. 1-10.
    [115] M. Brown, C. J. Harris, Neurofuzzy adaptive modelling and control. 1994: Prentice Hall.
    [116] M. Li, K. Mehrotra, C. Mohan, S. Ranka. Sunspot numbers forecasting using neural networks. in Proceedings. 5th IEEE International Symposium on Intelligent Control 1990. 1990. IEEE.
    [117] M. Gen, L. Lin, Genetic algorithms. Wiley Encyclopedia of Computer Science and Engineering, 2007: p. 1-15.
    [118] J. H. Holland, Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. 1992: MIT press.
    [119] K.-F. Man, K.-S. Tang, S. Kwong, Genetic algorithms: concepts and applications [in engineering design]. IEEE transactions on Industrial Electronics, 1996. 43(5): p. 519-534.
    [120] D. Pham, D. Karaboga, Intelligent optimisation techniques: genetic algorithms, tabu search, simulated annealing and neural networks. 2012: Springer Science & Business Media.
    [121] Z. Michalewicz, Genetic algorithms+ data structures= evolution programs. 2013: Springer Science & Business Media.
    [122] L. Davis, Handbook of genetic algorithms. 1991.
    [123] X. Wang, M. Elbuluk. Neural network control of induction machines using genetic algorithm training. in IAS'96. Conference Record of the 1996 IEEE Industry Applications Conference Thirty-First IAS Annual Meeting. 1996. IEEE.
    [124] M. Srinivas, L. M. Patnaik, Genetic algorithms: A survey. computer, 1994. 27(6): p. 17-26.
    [125] F. H.-F. Leung, H.-K. Lam, S.-H. Ling, P. K.-S. Tam, Tuning of the structure and parameters of a neural network using an improved genetic algorithm. IEEE Transactions on Neural networks, 2003. 14(1): p. 79-88.
    [126] S. Amin, J. Fernandez-Villacanas, Dynamic local search. 1997.
    [127] X. Yao, Y. Liu, G. Lin, Evolutionary programming made faster. IEEE Transactions on Evolutionary computation, 1999. 3(2): p. 82-102.
    [128] K. A. De Jong, Analysis of the behavior of a class of genetic adaptive systems. 1975.
    [129] Y. Hanaki, T. Hashiyama, S. Okuma. Accelerated evolutionary computation using fitness estimation. in IEEE SMC'99 Conference Proceedings. 1999 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No. 99CH37028). 1999. IEEE.
    [130] C. Charpentier, Investigation of deposition conditions and annealing treatments on sputtered ZnO:Al thin films: Material properties and application to microcristalline silicon solar cells. Plasma Physics 2012. Ecole Polytechnique X.
    [131] L. Yang, Q. Zhao, M. Willander, Size-controlled growth of well-aligned ZnO nanorod arrays with two-step chemical bath deposition method. Journal of alloys and compounds, 2009. 469(1-2): p. 623-629.
    [132] B. Cao, W. Cai, From ZnO nanorods to nanoplates: chemical bath deposition growth and surface-related emissions. The Journal of Physical Chemistry C, 2008. 112(3): p. 680-685.
    [133] Q. Li, J. Bian, J. Sun, J. Wang, Y. Luo, K. Sun, D. Yu, Controllable growth of well-aligned ZnO nanorod arrays by low-temperature wet chemical bath deposition method. Applied Surface Science, 2010. 256(6): p. 1698-1702.
    [134] S.-H. Yi, S.-K. Choi, J.-M. Jang, J.-A. Kim, W.-G. Jung, Low-temperature growth of ZnO nanorods by chemical bath deposition. Journal of colloid and interface science, 2007. 313(2): p. 705-710.
    [135] L. Guo, Y. L. Ji, H. Xu, P. Simon, Z. Wu, Regularly shaped, single-crystalline ZnO nanorods with wurtzite structure. Journal of the American Chemical Society, 2002. 124(50): p. 14864-14865.

    無法下載圖示 校內:2025-08-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE