簡易檢索 / 詳目顯示

研究生: 李涵
Lee, Han
論文名稱: 測繪車前拍影像密匹配之研究
Dense Matching of Forward-Taking MMS Images
指導教授: 蔡展榮
Tsay, Jaan-Rong
學位類別: 碩士
Master
系所名稱: 工學院 - 測量及空間資訊學系
Department of Geomatics
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 81
中文關鍵詞: 測繪車影像密匹配核幾何極坐標
外文關鍵詞: MMS, image dense matching, epipolar geometry
相關次數: 點閱:79下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用移動式測繪系統獲得的街景影像,進行影像密匹配可以獲取房屋和道路表面的高密度三維點雲資料,建置高細節程度的三維都市模型,可供街景道路測繪、道路設施管理等各式應用。然而,與傳統的航空攝影測量進行比較,基於拍攝幾何上的差異,測繪車前拍影像會遇到與航空影像不同的困難,例如:前拍影像攝影方向與相機移動方向幾乎平行,而無法使用一般常用的核影像重建方法、基線航高(物距)比與航空影像相比過小,深度方向量測精度差、同一張影像的各像點成像比例尺差異大等問題。本文研究上述問題並使用四個方式來改善:1. 改變核影像糾正方法、2. 增加影像數量、3.增加前後時段影像基線長、4.增加不同角度相機拍攝之影像。
    本文的實驗使用德國斯圖佳特大學研發的影像密匹配軟體SURE,採用測繪車前拍立體像對共22組影像,應用其多影像密匹配的特性,使用不同匹配組合產製點雲資料,並分析各組密匹配點雲品質,了解不同組合方式的改善程度。實驗測試成果顯示使用基於核線的核影像糾正法(Line-based rectification, LBR)在具有多張影像時可獲得較高的匹配成功率57.67%,優於相同組合使用基於平面的核影像糾正法(Plane-based rectification , PBR)的44.65%,而使用增加了傾斜45度相機拍攝之影像,雖然匹配成功率下降,但是其匹配點地面坐標精度0.103m,優於相同基線長前拍影像的0.199m。

    High density 3D point clouds on the surfaces of buildings and roads can be obtained by dense matching of images taken forwards by cameras installed on a mobile mapping system (MMS) along streets. These point clouds can be used e.g. for reconstruction of 3D city models with high level of detail (LoD), and also for mapping of street scenery. However, due to the different photography geometry between MMS forward-taking image and traditional aerial image, there are some disadvantages for dense matching forward-taking images on MMS. For example, the photographic baseline is almost parallel with the photographing direction (PD). It causes that the general epipolar rectification method cannot be used. Since the base-height ratio is too small, the accuracy in depth direction is usually poor, and the variation of image scale for the points on the same image is large. This research aims at studying these problems and trying to solve them by: 1. changing the epipolar rectification methods, 2. increasing the number of matching pairs, 3. increasing baseline length of forward-taking images, 4. increasing the number of matching pairs with different PDs.
    The experiments are done by using the image dense matching software SURE developed by the Stuttgart University, Germany. Also 22 image sets taken on a MMS are adopted for tests. Their interior and exterior orientation data are determined by photo triangulation. After generation of all sets of dense point clouds, their quality will be analyzed. The result shows that if we apply Line-based rectification (LBR) to generate the epipolar image, the multi-image sets will get a higher successful matching rate 57.67% than the one 44.65% determined with the same sets of images using plane-based rectification (PBR). If images tilted with 45 degrees are also adopted, the successful matching ratio decreases, but the accuracy of object coordinates of matched points increases to 0.103m which is better than the accuracy 0.199m determined with the forward-taking MMS image sets of the same baseline length.

    中文摘要 I Extended Abstract II 誌謝 VII 目錄 VIII 表目錄 X 圖目錄 XII 第一章 前言 1 1-1 研究動機 1 1-2 研究目的 3 1-3 文獻回顧 4 1-3-1 影像密匹配 4 1-3-2 核影像糾正 6 1-3-3 MMS影像在建立街景三維模型的應用 7 1-3-4 密點雲品質評估方法 11 1-4 研究流程 13 1-5 論文架構 13 第二章 研究方法 15 2-1 像片三角測量 15 2-2 SURE密點雲產製 17 2-2-1 半全域匹配法 18 2-2-2 多影像密匹配 20 2-3 產製核影像 21 2-3-1 Fusiello 立體像對糾正法 23 2-3-2 Pollefeys極坐標糾正法 24 第三章 點雲品質評估方法 28 3-1 初步評估 28 3-1-1 匹配成功率 28 3-1-2 目視檢查 29 3-1-3 計算點雲密度 29 3-2 獨立量測法 30 3-3 點雲萃取平面特徵 31 3-4 顯著性分析 33 第四章 實驗成果與分析討論 34 4-1 實驗資料 34 4-1-1 實驗影像資訊 34 4-1-2 匹配組合 42 4-1-3 招牌平面及路面資訊 44 4-1-4 密點雲成果初步評估 46 4-1-5 點雲萃取面特徵 51 4-1-6 獨立量測法 56 4-1-7 第一部份小結 58 4-2 第二部分使用匹配組合成果 59 4-2-1 匹配組合決定 59 4-2-2 密點雲成果初步評估 63 4-2-3 點雲萃取面特徵 65 4-2-4 獨立量測法 68 4-2-5 第二部份小結 70 第五章 結論 71 參考文獻 77

    丁皓偉,「結合十字區塊匹配之半全域匹配法優化作業」,國立臺灣大學土木工程學研究所碩士論文,臺北,2014。

    李欣錡,「結合邊緣特徵資訊之半全域式匹配法」,國立臺灣大學土木工程學研究所碩士論文,臺北,2016。

    李硯婷,「空照影像密匹配成果偵錯之瓶頸及解決辦法」,國立成功大學測量及空間資訊學系碩士論文,臺南,2014。

    湯凱佩及曾義星,「光達資料八分樹結構化於平面特徵萃取」,航測及遙測學刊,vol.10, No.1, pp. 59-70, 2005.

    Anguelov, D., Dulong, C., Filip, D., Frueh, C., Lafon, S., Lyon, R., Ogale, A., Vincent, L. Weaver,J., Google street view: Capturing the world at street level , Computer 6, Vol.43, pp.32–38, 2010.

    Birchfield, S. and Tomasi, C.,Depth discontinuities by pixel to-pixel stereo, In Proceedings of the 6th International Conference on Computer Vision, pp. 1073–080, 1998.

    Boykov, Y., Veksler, O., and Zabih, R., Fast approximate energy minimization via graph cuts, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.23 pp.1222–1239, 2001.

    Brown, D.C., Close-Range Camera Calibration. Photogrammetric Engineering, pages 855-866, Vol. 37, No. 8, 1971.

    Cavegn, S., Haala, N., Nebiker, S., Rothermel, M., Tutzauer P. ,Benchmarking High Density Image Matching For Oblique Airborne Imagery, ISPRS Technical Commission III Symposium, pp.45-52, 2014.

    Cavegn, S., Haala, N., Nebiker, S., Rothermel, M., Zwölfer, T, Evaluation of Matching Strategies For Image-Based Mobile Mapping, ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. II-3/W5, pp.361-368, 2015.

    Chen, Z., Pears, N. Liang, B., Monocular obstacle detection using reciprocal-polar rectification, Image and Vision Computing, Vol.24, pp.1301–312, 2006.

    Dhond, U.R., Aggarwal J.K, Structure from stereo – a review, IEEE Transactions on Systems, Man, And Cybernetics, Vol.19 No.6, pp.1489–1510, 1989.

    Ellum C. and El-Sheimy ,N., Land-Based Mobile Mapping Systems, Photogrammetric Engineering & Remote Sensing ,Vol.68, pp.13-28, 2002.

    Fusiello, A. Emanuele Trucco, Alessandro Verri., A compact algorithm for rectification of stereo pairs, Machine Vision and Applications, Vol.12, pp.16–22, 2000.

    Furukawa, Y. and Ponce, J., Accurate dense and robust multiview stereopsis, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 32, pp.1362–1376, 2010.

    Haala, N., Multiray Photogrammetry and Dense Image Matching, Photogrammetric Week '11, pp.185-195,2011.

    Haala, N. and Rothermel, M. Dense multi-stereo matching for high quality digital elevation models, Photogrammetrie, Fernerkundung. Geoinformation (PFG), Vol.4, pp.331–343, 2012.

    Hirschmüller, H., Accurate and Efficient Stereo Processing by Semi-Global Matching and Mutual Information, IEEE Conference on Computer Vision and Pattern Recognition, Vol. 2, pp. 807-814, 2005.

    Hirschmüller, H. and Buder, M. and Ernst I. , Memory Efficient Semi-Global Matching ,ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. I-3, 2012.

    Hosseininaveh Ahmadabadian, A., Robson, S., Boehm, J.,Shortis, M., Wenzel, K. & Fritsch, D., A comparison of dense matching algorithms for scaled surface reconstruction using stereo camera rigs, ISPRS Journal of Photogrammetry and Remote Sensing, Vol.78, pp. 157-167,2013.

    Isgrò F., Trucco E., On robust rectification for uncalibrated images, ICIAP '99 Proceedings of the 10th International Conference on Image Analysis and Processing, pp.297-304, 1999.

    Kruck ,E.J., BINGO Bundle Adjustment for Engineering Applications Version 6.8 User’s Manual, Geoinformatics & Photogrammetric Engineering Company, 2016.

    Laveau S., Faugeras O., Oriented projective geometry for computer vision. Computer Vision—ECCV96, Lecture Notes Computer Sci., Vol. 1064, pp.147–156, 1996.

    Lee,Y., Toh, K.A., Lee,S., Stereo image rectification based on polar transformation. Optical Engineering, Vol. 47, pp. 2 -12, 2008.

    Lim, S.N., Mittal, A., Larry S. Davis, Paragios,N. ,Uncalibrated Stereo Rectification For Automatic 3D Surveillance. Image Processing ICIP '04 International Conference, Vol.2, pp. 1357-1360, 2004.

    Liu, H., Zhu, Z.,Yao, L., Dong, J., Chen, S., Zhang, X., Shang Y., Epipolar rectification method for a stereovision system with telecentric cameras, Optics and Lasers in Engineering, Vol.83 , pp.99–105, 2016a.

    Liu, J., Guo B., Jiang,W., Gong,W. and Xiao,X., Epipolar Rectification with Minimum Perspective Distortion for Oblique Images, Sensors 2016, Vol.16, 2016b.

    Loop, C., Zhang, Z., Computing Rectifying Homographies for Stereo Vision, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,
    Vol.1, pages 125–13, 1999.

    Mallon, J., Whelan, Paul F., Projective Rectification from the Fundamental Matrix,
    Vision Systems Group, Dublin City University, Dublin 9, 2005.

    Nebikera, S., Cavegna,S., Eugstera,H.,Laemmerc, K., Markramc, J., Wagnerc, R. , Fusion of Airborne and Terrestrial Image-Based 3D Modelling For Road Infrastructure Management, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXIX-B4, 2012.

    Nebikera, S., Cavegna,S., Loesch, B., Cloud-Based Geospatial 3D Image spaces—A Powerful Urban Model for the Smart City., ISPRS Int. J. Geo-Inf., pp.2268-2290, 2015.

    nFrame , SURE – Manual., http://www.nframes.com/, 2014.

    Oram, D., Rectification for Any Epipolar Geometry, In Tim Cootes and Chris Taylor, editors, Proceedings of the British Machine Conference, pp. 67.1-67.10, 2001.

    Paparoditis, N., Papelard, J.P., Cannelle, B., Devaux, A., Soheilian, B., David,N., Houzay,E., Stereopolis II: A Multi-Purpose And Multi-Sensor 3D Mobile Mapping System For Street Visualisation And 3D Metrology, Rev. Française Photogramm. Télédétection, Vol.200, pp.69-79, 2012.

    Pierrot-Deseilligny, M. and Paparoditis, N., A multiresolution and Optimization-based image matching approach: an application to surface reconstruction from SPOT5-HRS stereo imagery, International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol.XXXVI-1/W41, 2006.

    Pollefeys, M., Koch, R., and Van Gool, L., A Simple and Efficient Rectification Method for General Motion, International Conference on Computer Vision, pp. 496-501, 1999.

    Pollefeys, M., Nistér, D., Frahm J. M., Akbarzadeh, A., Mordohai, P., Detailed Real-Time Urban 3D Reconstruction from Video, Int J Comput Vis 2008, Vol.78, pp.143–167, 2008.

    Puente, I., González-Jorge, H., Martínez-Sánchez, J., Arias, P., Review of mobile mapping and surveying technologies, Measurement, Vol. 46, pp. 2127–2145, 2013.

    Remondino, F., Spera, M. G., Nocerino, E., Menna, F. & Nex,F., State of the Art in High Density Image Matching, The Photogrammetric Record, Vol. 29, pp. 144-166, 2014.

    Rothermel, M., Wenzel, K., Fritsch, D. and Haala, N., SURE: photogrammetric Surface reconstruction from imagery, LC3D Workshop, 2012.

    Roy,S., J. Meunier, and Cox,I., Cylindrical rectification to minimize epipolar distortion, Proc. IEEE Conf. Computer Vision Patt. Recog, pp. 393–399, 1997.

    Scharstein, D. and Szeliski, R., Stereo matching with nonlinear diffusion., IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 28, pp.155–174, 1998.

    Scharstein, D. and Szeliski, R., A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms, International Journal of Computer Vision , Vol. 47, pp.7–42, 2002.

    Shapiro L, Zisserman A, Brady M,, 3D motion recovery via affine epipolar geometry, Int. J. Comput Vision, Vol. 16, pp.147–82, 1995.

    Tao ,C.V., Li, J., Advances in Mobile Mapping Technology, Taylor & Francis Group, 2007.

    Wolf, P., DeWitt, P., Wilkinson, B. , Elements of Photogrammetry with Applications in GIS 4th Edition , McGraw-Hill Education, 2014

    下載圖示 校內:2019-08-30公開
    校外:2019-08-30公開
    QR CODE