簡易檢索 / 詳目顯示

研究生: 徐任民
Hsu, Jen-min
論文名稱: 預測股票報酬與辨識價值錯訂股票:台灣股市效率性驗證
Predicting Stock Returns And Identifying Mispriced Securities: Market Efficiency Test On Taiwan Data
指導教授: 黃銘欽
Huang, Ming-chin
學位類別: 碩士
Master
系所名稱: 管理學院 - 統計學系
Department of Statistics
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 54
中文關鍵詞: 每股盈餘決策樹區別分析財務比邏輯斯迴歸效率市場假說
外文關鍵詞: financial ratio, EPS, efficient market hypothesis, decision tree, discriminant analysis, logistic regression
相關次數: 點閱:170下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 效率市場假說主張,市場價格已經充份反應所有可用的訊息。
    這個分別由 Paul A. Samuelson 和 Eugene F. Fama 各自獨立發展的理論,
    已經大量廣泛應用在有關證券價格的理論模型和實證研究上,
    並且引起廣泛的討論。
    同時在價格發現過程中,也提供十分重要的論點。

    由於台灣股市的快速發展,
    台灣股市的市場效率已成為熱門的研究主題。的市場效率性,
    並希望找出價格相關的財務比,能夠藉此預測股價報酬。

    實證結果顯示,
    台灣股市效率性在關於每股盈餘的驗證,
    確為一效率市場,
    投資人無法藉由每股盈餘的資訊揭露來獲取超額報酬。
    再者,藉由分析公司的財務比,來預測未來每股盈餘的變化,
    本論文嘗試驗證台灣股市在反應每股盈餘及其他財務比資訊
    也無法替投資人帶來異常報酬。

    The efficient markets hypothesis (EMH) maintains that market prices fully reflect all available information.
    Developed independently by Paul A. Samuelson and Eugene F. Fama in the 1960s, this idea has been applied
    extensively to theoretical models and empirical studies of financial securities prices,
    generating considerable controversy as well as fundamental insights into the price-discovery process.
    Due to the rapid development of stock market in Taiwan, the efficiency of the Taiwan stock market also has
    been one of the hot topics. The thesis tries to test the efficient market hypothesis (EMH)
    for the Taiwan stock market with respect to earnings per share and other publicly available financial
    statement information, and studies whether financial ratios can predict aggregate stock returns.
    The results show that there is no significant evidence to reject the hypothesis that Taiwan market is
    efficient, and it is hardly possible to form a portfolio that earns excess returns persistently.

    1 Introduction 1 2 Literature Review 3 2.1 Efficient Market 3 2.1.1 Random Walk Theory 3 2.1.2 Efficient Market Hypothesis 4 2.2 Tests and Results of Semistong-form Hypothesis 5 2.2.1 Event Studies 6 2.2.2 Return Prediction Studies 7 2.3 Financial Statement Analysis 8 2.3.1 Financial Ratios 8 2.3.2 Use of Financial Ratios in EMH 9 3 Model and Methodologies 16 3.1 Model 16 3.1.1 Response Variable 16 3.1.2 Abnormal Performance Index 17 3.2 Logistic Regression 18 3.2.1 Introduction 18 3.2.2 Model 18 3.2.3 Stepwise Procedure 20 3.3 Discriminant Analysis 21 3.3.1 Introduction 21 3.3.2 Assumptions 22 3.3.3 Fisher’s Approach 22 3.3.4 Classification Rules 23 3.3.5 Stepwise Procedures 24 3.4 Decision Tree 25 3.4.1 Basic idea 25 3.4.2 Design Tree 26 3.4.3 Missing Values 27 3.4.4 Model Overfitting 28 3.4.5 Right-Sized Tree 29 4 Empirical Data And Results 32 4.1 Data 32 4.1.1 EPS 35 4.1.2 Financial Ratios 35 4.1.3 Prices 35 4.1.4 Announcement Dates 36 4.1.5 Inclusion Criteria 36 4.2 API of Multivariate Models 36 4.2.1 Perfect Foreknowledge Strategy 37 4.2.2 Logistic Regression 38 4.2.3 Discriminant Analysis 43 4.2.4 Decision Tree 44 4.3 Classification Results and Performance of Portfolios 47 4.3.1 Classification Results 47 4.3.2 Performance of Investment Portfolios 48 4.4 Concluding Remarks 51 References 52

    Agresti, A. (2002), Categorical data analysis, Hoboke, N.J.: Wiley-Interscience, 2nd edition.
    Altman, E. I. (1968), “Financial Ratios, Discriminant Analysis and The Prediction of
    Corporate Failure,” Journal of Finance, 22, 589-609.
    Ball, R., and Brown, P. (1968), “An empirical evaluation of accounting income numbers,”
    Journal of Accounting Research 6, 159-178.
    Beaver, W. H. (1966), “Financial Ratios as Predictors of Failure,” Journal of Accounting
    Research Supplement, 71-111.
    Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (1984), Classification
    and regression trees, Belmont, Calif.: Wadsworth International Group.
    Braun, H., and Chandlar, S. S. (1987), “Predicting Stock Market Behavior through Rule
    Induction: an Application of the Learning-from-Example Approach,” Decision Science,
    18, 415-429.
    Dillon, W. R., and Goldstein, M. (1984), Multivariate analysis :methods and applica-
    tions, New York: Wiley.
    Fama, E. F. (1965), “The Behavior of Stock Market Price,” Journal of Business 38,
    52
    34-105.
    Fama, E. F. (1970), “Efficient capital markets: a review of theory and empirical work,”
    Journal of Finance 25, 383-417.
    Fama, E. F. (1991), “Efficient capital markets: II,” Journal of Finance 46, 1575-1617.
    Fama, E. F., and French, K. R. (1992), “The Cross-Section of Expected Stock Returns,”
    Journal of Finance 47, 427-465.
    Foster, G. (1986), Financial Statement Analysis, Englewood Cliffs, NJ: Prentice Hall.
    Kendall, M. (1953), “The analysis of economic time series, part I: prices”, Journal of
    the Royal Statistical Society 96, 11-25.
    Kohavi, R. (1995), “A study on Cross-Validation and Bootstrap for accuracy Estimation
    and Model Selection,” In Porc. of the 15th Intl. Joint Conf. on Artificial Intelligence,
    1137-1145.
    Lewellen, J. (2004), “Predicting Returns with Financial Ratios,” Journal of Financial
    Economics, 74, 209-235.
    Lo, A. W. (1986), “Logit versus Discriminant Analysis: A Specification Test and Application
    to Corporate Bankruptcies,” Journal of Economics, 31, 151-179.
    Ou, J. A., and Penman, S. H. (1989), “Financial Statement Analysis and the Prediction
    of Stock Returns,” Journal of Accounting and Economics 12, 296-329.
    Palepu, K. G., Healy, P. M., and Bernard, V. L. (2008), Business analysis & valua-
    tion :using financial statements : texts & cases, Mason, OH: Thomson South-Western.
    Reilly, F. K., and Keith, K. C. (2006),Investment Analysis And Portfolio Management,
    53
    Fort Worth: Dryden Press, 8th edition.
    Samuelson, P. (1965), “Proof that Properly Anticipated Prices Fluctuate Randomly”,
    Industrial Management Review, 6, 41-49.
    Sharma, S. (1996), Applied multivariate techniques, New York: J. Wiley.
    Skogsvik, S., and Skogsvik, K. (2005), “Forecasting the book return on owners’ equity
    and the identification of mispriced securities: market efficiency tests on Swedish data,”
    Working Paper Series in Business Administration, Stockholm School of Economics, 8.
    Setiono, B., and Strong, N. (1998), “Predicting Stock Returns Using Financial Statement
    Information”, Journal of Business Finance & Accounting, 25, 631-657.
    Tan, P., Steinbach, M., and Kumar, V. (2006), Introduction to Data Mining, Boston:
    Pearson Addison Wesley.
    Trigueros, J. R. (1999), “Extracting Earning Information from financial statement via
    Genetic Algorithm,” Computational Intelligence for Financial Engineering, 1999. (CIFEr)
    proceedings of the IEEE/IAFE 1999 Conference on, 28-30.
    Zhang, H. (1998), “Classification trees for multiple binary response,” Journal of Amer-
    ican Statistical Association, 93, 180-193.
    54

    下載圖示 校內:2009-07-22公開
    校外:2009-07-22公開
    QR CODE