| 研究生: |
王舜民 Wang, Shun-Min |
|---|---|
| 論文名稱: |
運用於中風病人上肢復健之高精度特效波經顱電刺激器開發 Design of a High Definition Novel Transcranial Electrostimulation System for Upper Limb Rehabilitation in Chronic Stroke |
| 指導教授: |
陳家進
Chen, Jia-Jin |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 生物醫學工程學系 Department of BioMedical Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 西塔特效波 、非侵入式腦刺激 、重複性經顱磁刺激 、神經可塑性 |
| 外文關鍵詞: | Theta Burst Stimulation (TBS), Noninvasive Brain Stimulation, Repetitive transcranial magnetic stimulation (rTMS), Neuroplasticity |
| 相關次數: | 點閱:62 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中風為世界上死亡及長期殘疾之主因,也造成社會和經濟上巨大的負擔。運動障 礙是中風後致殘的主要原因,導致嚴重的健康問題。大多數有上肢(UE)損傷的中風 患者,無法使用上肢的應有功能,而且只有不到四分之一的人可以完全康復。因此, 各種研究方法正努力試圖提高針對 UE 的中風康復的有效性。
近年來非侵入性腦刺激的相關研究數量正大幅增加中,尤其是在重複經顱磁刺激 (rTMS)和經顱電刺激(tES)。特效波形,即 theta burst stimulation(TBS),是模 仿大腦神經元自然節律的一種革命性形式的大腦刺激。 TBS 可以應用於運動皮層, 以誘導 LTD 式皮層可塑性或 LTP 長期的皮層可塑性。此外,將直流電與類似 TBS 的 間歇波形相結合也展現出比常規直流電(DC)波形更強的神經可塑性。
這項研究旨在設計一種新型高精度經顱特效波電刺激裝置的原型,並展開初步的 臨床試驗中,以確定其在慢性中風患者中的可行性,安全性和治療效果。我們已經完 成了第一代新型高精度經顱特效波電刺激裝置的開發,並且在在經過安全測試和功能 驗證後展開初期的臨床研究。
我們採用隨機對照試驗。將患者隨機分為實驗組或對照組。實驗/對照組接受運 動皮層同側 M1 20 min 主動/假刺激,同時施行患側上肢復健,每次 30 min,每週 3 次,持續 4 週。主動電刺激以 1.0 mA 的直流結合 1.0 mA 的間歇性 theta 脈衝,假 電刺激則在最初及最後提供刺激波形以避免安慰劑效應。Fugl-Meyer 上肢評估(FMA- UE)是主要的效能指標; 沃爾夫運動功能測驗(WMFT),指鼻測試(FNT), Jebsen- Taylor 手功能測試 (JTT), 及改良的 Ashworth 量表(MAS)則是次要評估指標。
共有 24 名慢性中風患者參與研究。與對照組相比,實驗組在 FMA-UE、WMFT 和 FNT 方面顯現出更大的改善。治療後實驗組 MAS 評分下降幅度大於對照組。這 些結果表明上肢運動功能和協調能力的增強以及上肢肌張力的正常化具有更好的治 療效果。所有參與者在 12 個療程中皆沒有嚴重的不良事件。只有少數參與者在刺激 電極下檢測到皮膚輕微發紅或發癢,其他參與者在治療後沒有反饋任何不良症狀。
我們的研究結果支持高精度經顱特效波電刺激結合上肢復健,對上肢運動功能和 協調能力的增強以及上肢肌張力的正常化具有治療潛力。
Stroke, a condition that may lead to long-term disability and death, has a considerable societal and economic burden. The principal cause of poststroke disability, motor impairment, is linked to substantial health issues. The majority of stroke survivors who experience upper extremity (UE) impairment do not exhibit sufficient UE function, and less than 25% achieve full recovery. Thus, increasing the effectiveness of stroke rehabilitation to ameliorate UE impairment is crucial.
Recent research on noninvasive means of brain stimulation has increased, especially on transcranial electrical stimulation (tES) and repetitive transcranial magnetic stimulation (rTMS). A waveform elicited under a theta burst stimulation (TBS) protocol, a patterned type of rTMS, closely resembles neurons’ natural rhythm. TBS of the motor cortex can induce long-term depression–like or long-term potentiation–like cortical plasticity. Furthermore, combining dc with intermittent TBS-like waveforms elicits greater effects on neuroplasticity than do conventional dc waveforms alone.
We developed a prototype high-definition transcranial electrical stimulator and applied it in a clinical trial to determine its safety, feasibility, and therapeutic efficacy for chronic stroke patients. The prototype can produce a constant current across four electrodes.
In a randomized controlled trial, patients with stroke were assigned to a control or experimental group. The experimental (control) group received 20 min of active (sham) stimulation to the ipsilateral M1. At the same time, they received UE rehabilitation of the affected side lasting 30 min thrice weekly for 4 weeks. The active stimulation was applied at 1.0-mA intensity for both the dc and intermittent TBS. The sham stimulation comprised only ramp-up and ramp-down stimulation periods, which were included to avoid placebo effects. The Fugl-Meyer Assessment-Upper Extremity (FMA-UE) was considered the primary outcome. Jebsen–Taylor Hand Function Test (JTT), Wolf Motor Function Test (WMFT), Modified Ashworth Scale (MAS), and finger-to-nose test (FNT) scores were evaluated as secondary outcomes.
Twenty-four patients with chronic stroke participated. Compared with the control group, the experimental group experienced greater improvements on the FNT, FMA-UE, and WMFT. Moreover, they had lower MAS scores after the treatment protocol. Compared with the control treatment, the effects of transcranial electrostimulation (tES) combined with UE rehabilitation were greater on UE motor function, coordination, and muscle tone. No serious adverse events were observed over the 12 treatment sessions. Only few participants had temporary slight scalp redness or scalp itching as known common physical responses and most of participants reported no adverse effects after treatment.
Our findings indicate that our device is safe and has therapeutic potential for improving motor function and alleviating spasticity in poststroke UE rehabilitation.
1. Feigin VL, Roth GA, Naghavi M, Parmar P, Krishnamurthi R, Chugh S, et al. Global burden of stroke and risk factors in 188 countries, during 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet Neurology. 2016;15:913–24.
2. Gorelick PB. The global burden of stroke: persistent and disabling. Lancet Neurology. 2019;18 Ann NY Acad Sci 1268 2012:417–8.
3. Donkor ES. Stroke in the 21st Century: A Snapshot of the Burden, Epidemiology, and Quality of Life. Stroke Res Treat. 2018;2018:1–10.
4. Kwakkel G, Kollen BJ, Grond J van der, Prevo AJH. Probability of Regaining Dexterity in the Flaccid Upper Limb. Stroke. 2003;34:2181–6.
5. Winstein CJ, Stein J, Arena R, Bates B, Cherney LR, Cramer SC, et al. Guidelines for Adult Stroke Rehabilitation and Recovery. Stroke. 2016;47:e98–169.
6. Wagner T, Valero-Cabre A, Pascual-Leone A. Noninvasive Human Brain Stimulation. Annu Rev Biomed Eng. 2007;9:527–65.
7. Pilato F, Dileone M, Capone F, Profice P, Caulo M, Battaglia D, et al. Unaffected motor cortex remodeling after hemispherectomy in an epileptic cerebral palsy patient. A TMS and fMRI study. Epilepsy Res. 2009;85:243–51.
8. Dodd KC, Nair VA, Prabhakaran V. Role of the Contralesional vs. Ipsilesional Hemisphere in Stroke Recovery. Front Hum Neurosci. 2017;11:469.
9. Cooke SF, Bliss TVP. Plasticity in the human central nervous system. Brain. 2006;129:1659–73.
10. Nelles G. Cortical reorganization--effects of intensive therapy. Restor Neurol Neuros. 2004;22:239–44.
11. Jones TA, Kleim JA, Greenough WT. Synaptogenesis and dendritic growth in the cortex opposite unilateral sensorimotor cortex damage in adult rats: a quantitative electron microscopic examination. Brain Res. 1996;733:142–8.
12. Dancause N, Barbay S, Frost SB, Plautz EJ, Chen D, Zoubina EV, et al. Extensive Cortical Rewiring after Brain Injury. J Neurosci. 2005;25:10167–79.
13. Dimyan MA, Cohen LG. Neuroplasticity in the context of motor rehabilitation after stroke. Nature Clinical Practice Neurology. 2011;7:76–85.
14. Hara Y. Brain Plasticity and Rehabilitation in Stroke Patients. J Nippon Med Sch. 2015;82:4–13.
15. Warraich Z, Kleim JA. Neural Plasticity: The Biological Substrate For Neurorehabilitation. Pm&r. 2010;2:S208–19.
16. Cusin C, Dougherty DD. Somatic therapies for treatment-resistant depression: ECT, TMS, VNS, DBS. Biology Mood Anxiety Disord. 2012;2:14.
17. Fitzgerald PB, Fountain S, Daskalakis ZJ. A comprehensive review of the effects of rTMS on motor cortical excitability and inhibition. Clin Neurophysiol. 2006;117:2584–96.
18. Ljubisavljevic AJJOKPNNSSTEAMR. The Effects of Different Repetitive Transcranial Magnetic Stimulation (rTMS) Protocols on Cortical Gene Expression in a Rat Model of Cerebral Ischemic-Reperfusion Injury. 2015;:1–25.
19. Emara TH, Moustafa RR, ElNahas NM, ElGanzoury AM, Abdo TA, Mohamed SA, et al. Repetitive transcranial magnetic stimulation at 1Hz and 5Hz produces sustained improvement in motor function and disability after ischaemic stroke. Eur J Neurol. 2010;17:1203–9.
20. Bindman LJ, Lippold OCJ, Redfearn JWT. Long-lasting Changes in the Level of the Electrical Activity of the Cerebral Cortex produced by Polarizing Currents. Nature. 1962;196:584–5.
21. Hallett M. Transcranial magnetic stimulation and the human brain. Nature. 2000;406:147–50.
22. Nitsche MA, Paulus W. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology J Am Hear Assoc. 2001;57:1899–901.
23. Zaghi S, Heine N, Fregni F. Brain stimulation for the treatment of pain: A review of costs, clinical effects, and mechanisms of treatment for three different central neuromodulatory approaches. J Pain Management. 2009;2:339–52.
24. Triccas LT, Burridge JH, Hughes AM, Pickering RM, Desikan M, Rothwell JC, et al. Multiple sessions of transcranial direct current stimulation and upper extremity rehabilitation in stroke: A review and meta-analysis. Clinical Neurophysiology. 2016;127:946–55.
25. Datta A, Bansal V, Diaz J, Patel J, Reato D, Bikson M. Gyri-precise head model of transcranial direct current stimulation: Improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimul. 2009;2:201-207.e1.
26. Li Y-T, Chen S-C, Yang L-Y, Hsieh T-H, Peng C-W. Designing and Implementing a Novel Transcranial Electrostimulation System for Neuroplastic Applications: A Preliminary Study. Ieee T Neur Sys Reh. 2019;27:805–13.
27. Huang Y-Z, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC. Theta Burst Stimulation of the Human Motor Cortex. Neuron. 2005;45:201–6.
28. Huang Y-Z, Chen R-S, Rothwell JC, Wen H-Y. The after-effect of human theta burst stimulation is NMDA receptor dependent. Clin Neurophysiol. 2007;118:1028–32.
29. Nitsche MA, Doemkes S, Karaköse T, Antal A, Liebetanz D, Lang N, et al. Shaping the Effects of Transcranial Direct Current Stimulation of the Human Motor Cortex. J Neurophysiol. 2007;97:3109–17.
30. Chen S-C, Yang L-Y, Adeel M, Lai C-H, Peng C-W. Transcranial electrostimulation with special waveforms enhances upper-limb motor function in patients with chronic stroke: a pilot randomized controlled trial. J Neuroeng Rehabil. 2021;18:106.
31. Minhas P, Bansal V, Patel J, Ho JS, Diaz J, Datta A, et al. Electrodes for high-definition transcutaneous DC stimulation for applications in drug delivery and electrotherapy, including tDCS. Journal of Neuroscience Methods. 2010;190:188–97.
32. Fischer DB, Fried PJ, Ruffini G, Ripolles O, Salvador R, Banus J, et al. Multifocal tDCS targeting the resting state motor network increases cortical excitability beyond traditional tDCS targeting unilateral motor cortex. Neuroimage. 2017;157:34–44.
33. Villamar MF, Volz MS, Bikson M, Datta A, DaSilva AF, Fregni F. Technique and Considerations in the Use of 4x1 Ring High-definition Transcranial Direct Current Stimulation (HD-tDCS). Journal of Visualized Experiments. 2013;:1–15.
34. Pellegrini M, Zoghi M, Jaberzadeh S. The effects of transcranial direct current stimulation on corticospinal and cortico-cortical excitability and response variability: Conventional versus high-definition montages. Neurosci Res. 2020. https://doi.org/10.1016/j.neures.2020.06.002.
35. Kuo H-I, Bikson M, Datta A, Minhas P, Paulus W, Kuo M-F, et al. Comparing Cortical Plasticity Induced by Conventional and High-Definition 4 × 1 Ring tDCS: A Neurophysiological Study. Brain Stimul. 2013;6:644–8.
36. Nikolin S, Loo CK, Bai S, Dokos S, Martin DM. Focalised stimulation using high definition transcranial direct current stimulation (HD-tDCS) to investigate declarative verbal learning and memory functioning. NeuroImage. 2015;117 C:11–9.
37. Borckardt JJ, Bikson M, Frohman H, Reeves ST, Datta A, Bansal V, et al. A Pilot Study of the Tolerability and Effects of High-Definition Transcranial Direct Current Stimulation (HD-tDCS) on Pain Perception. J Pain. 2012;13:112–20.
38. Huang Y, Datta A, Bikson M, Parra LC. Realistic volumetric-approach to simulate transcranial electric stimulation—ROAST—a fully automated open-source pipeline. J Neural Eng. 2019;16:056006.
39. Huang Y, Datta A, Bikson M, Parra LC. ROAST: An Open-Source, Fully-Automated, Realistic Volumetric-Approach-Based Simulator For TES. 2018 40th Annu Int Conf Ieee Eng Medicine Biology Soc Embc. 2018;00:3072–5.
40. Ashburner J, Friston KJ. Unified segmentation. Neuroimage. 2005;26:839–51.
41. Fang Q, Boas DA. Tetrahedral mesh generation from volumetric binary and grayscale images. 2009 Ieee Int Symposium Biomed Imaging Nano Macro. 2009;:1142–5.
42. Dular P, Geuzaine C, Henrotte F, Legros W. A general environment for the treatment of discrete problems and its application to the finite element method. Ieee T Magn. 1998;34:3395–8.
43. Fugl-Meyer AR, Jääskö L, Leyman I, Olsson S, Steglind S. The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance. Scand J Rehabil Med. 1975;7:13–31.
44. Gladstone DJ, Danells CJ, Black SE. The Fugl-Meyer Assessment of Motor Recovery after Stroke: A Critical Review of Its Measurement Properties. Neurorehab Neural Re. 2002;16:232–40.
45. Wolf SL, Catlin PA, Ellis M, Archer AL, Morgan B, Piacentino A. Assessing Wolf Motor Function Test as Outcome Measure for Research in Patients After Stroke. Stroke. 2001;32:1635–9.
46. Rodrigues MRM, Slimovitch M, Chilingaryan G, Levin MF. Does the Finger-to-Nose Test measure upper limb coordination in chronic stroke? J Neuroeng Rehabil. 2017;14:6.
47. Jebsen RH, Taylor N, Trieschmann RB, Trotter MJ, Howard LA. An objective and standardized test of hand function. Arch Phys Med Rehab. 1969;50:311–9.
48. Bohannon RW, Smith MB. Interrater Reliability of a Modified Ashworth Scale of Muscle Spasticity. Phys Ther. 1987;67:206–7.
49. Chen C-L, Chen C-Y, Chen H-C, Wu C-Y, Lin K-C, Hsieh Y-W, et al. Responsiveness and minimal clinically important difference of Modified Ashworth Scale in patients with stroke. Eur J Phys Rehab Med. 2020;55.
50. Lin K, Hsieh Y, Wu C, Chen C, Jang Y, Liu J. Minimal Detectable Change and Clinically Important Difference of the Wolf Motor Function Test in Stroke Patients. Neurorehab Neural Re. 2009;23:429–34.
51. Page SJ, Fulk GD, Boyne P. Clinically Important Differences for the Upper-Extremity Fugl-Meyer Scale in People With Minimal to Moderate Impairment Due to Chronic Stroke. Phys Ther. 2012;92:791–8.
52. Araneda R, Ebner‐Karestinos D, Paradis J, Saussez G, Friel KM, Gordon AM, et al. Reliability and responsiveness of the Jebsen‐Taylor Test of Hand Function and the Box and Block Test for children with cerebral palsy. Dev Medicine Child Neurology. 2019;61:1182–8.
53. Cohen J. Statistical Power Analysis for the Behavioral Sciences. 1988. https://doi.org/10.4324/9780203771587.
54. Brunoni AR, Amadera J, Berbel B, Volz MS, Rizzerio BG, Fregni F. A systematic review on reporting and assessment of adverse effects associated with transcranial direct current stimulation. Int J Neuropsychoph. 2011;14:1133–45.
55. Chen H-Y, Chen S-C, Chen J-JJ, Fu L-L, Wang YL. Kinesiological and kinematical analysis for stroke subjects with asymmetrical cycling movement patterns. J Electromyogr Kines. 2005;15:587–95.
56. Szecsi J, Krewer C, Müller F, Straube A. Functional electrical stimulation assisted cycling of patients with subacute stroke: Kinetic and kinematic analysis. Clin Biomech. 2008;23:1086–94.
57. E Z, P C, H K, A G, C K, R K, et al. Safety and tolerability of transcranial magnetic and direct current stimulation in children: Prospective single center evidence from 3.5 million stimulations. Brain Stimul. 2019;13:565–75.
58. Lo C-C, Lin P-Y, Hoe Z-Y, Chen J-JJ. Near Infrared Spectroscopy Study of Cortical Excitability During Electrical Stimulation-Assisted Cycling for Neurorehabilitation of Stroke Patients. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2018;26:1292–300.
59. Bikson M, Grossman P, Thomas C, Zannou AL, Jiang J, Adnan T, et al. Safety of Transcranial Direct Current Stimulation: Evidence Based Update 2016. Brain Stimul. 2016;9:641–61.
60. Liebetanz D, Koch R, Mayenfels S, König F, Paulus W, Nitsche MA. Safety limits of cathodal transcranial direct current stimulation in rats. Clin Neurophysiol. 2009;120:1161–7.
61. Chhatbar PY, Chen R, Deardorff R, Dellenbach B, Kautz SA, George MS, et al. Safety and tolerability of transcranial direct current stimulation to stroke patients – A phase I current escalation study. Brain Stimulation. 2020;10:553–9.
62. Reckow J, Rahman-Filipiak A, Garcia S, Schlaefflin S, Calhoun O, DaSilva AF, et al. Tolerability and blinding of 4x1 high-definition transcranial direct current stimulation (HD-tDCS) at two and three milliamps. Brain Stimulation. 2018;11:991–7.
63. Hogeveen J, Grafman J, Aboseria M, David A, Bikson M, Hauner KK. Effects of High-Definition and Conventional tDCS on Response Inhibition. Brain Stimul. 2016;9:720–9.
64. Muthalib M, Besson P, Rothwell J, Perrey S. Focal Hemodynamic Responses in the Stimulated Hemisphere During High‐Definition Transcranial Direct Current Stimulation. Neuromodulation Technology Neural Interface. 2018;21:348–54.
65. Muthalib M, Besson P, Rothwell J, Ward T, Perrey S. Oxygen Transport to Tissue XXXVII. Adv Exp Med Biol. 2016;876:351–9.
66. Doppelmayr M, Pixa NH, Steinberg F. Cerebellar, but not Motor or Parietal, High-Density Anodal Transcranial Direct Current Stimulation Facilitates Motor Adaptation. J Int Neuropsych Soc. 2016;22:928–36.
67. Heimrath K, Breitling C, Krauel K, Heinze H, Zaehle T. Modulation of pre‐attentive spectro‐temporal feature processing in the human auditory system by HD‐tDCS. Eur J Neurosci. 2015;41:1580–6.
68. Gbadeyan O, McMahon K, Steinhauser M, Meinzer M. Stimulation of Dorsolateral Prefrontal Cortex Enhances Adaptive Cognitive Control: A High-Definition Transcranial Direct Current Stimulation Study. J Neurosci. 2016;36:12530–6.
69. Gözenman F, Berryhill ME. Working memory capacity differentially influences responses to tDCS and HD-tDCS in a retro-cue task. Neurosci Lett. 2016;629:105–9.
70. Turski CA, Kessler-Jones A, Chow C, Hermann B, Hsu D, Jones J, et al. Extended Multiple-Field High-Definition transcranial direct current stimulation (HD-tDCS) is well tolerated and safe in healthy adults. Restor Neurol Neuros. 2017;35:631–42.
71. Nikolin S, Lauf S, Loo CK, Martin D. Effects of High-Definition Transcranial Direct Current Stimulation (HD-tDCS) of the Intraparietal Sulcus and Dorsolateral Prefrontal Cortex on Working Memory and Divided Attention. Frontiers Integr Neurosci. 2019;12:64.
72. Albein-Urios N, Chase H, Clark L, Kirkovski M, Davies C, Enticott PG. Increased perseverative errors following high-definition transcranial direct current stimulation over the ventrolateral cortex during probabilistic reversal learning. Brain Stimul. 2019;12:959–66.
73. Chua EF, Ahmed R, Garcia SM. Effects of HD-tDCS on memory and metamemory for general knowledge questions that vary by difficulty. Brain Stimul. 2017;10:231–41.
74. Fiori V, Nitsche MA, Cucuzza G, Caltagirone C, Marangolo P. High-Definition Transcranial Direct Current Stimulation Improves Verb Recovery in Aphasic Patients Depending on Current Intensity. Neuroscience. 2019;406:159–66.
75. Jaberzadeh S, Bastani A, Zoghi M. Anodal transcranial pulsed current stimulation: A novel technique to enhance corticospinal excitability. Clin Neurophysiol. 2014;125:344–51.
76. Morales-Quezada L, Cosmo C, Carvalho S, Leite J, Castillo-Saavedra L, Rozisky JR, et al. Cognitive effects and autonomic responses to transcranial pulsed current stimulation. Exp Brain Res. 2015;233:701–9.
77. Kunz P, Antal A, Hewitt M, Neef A, Opitz A, Paulus W. 5 kHz Transcranial Alternating Current Stimulation: Lack of Cortical Excitability Changes When Grouped in a Theta Burst Pattern. Front Hum Neurosci. 2017;10:683.
78. Miller JP, Sweet JA, Bailey CM, Munyon CN, Luders HO, Fastenau PS. Visual-spatial memory may be enhanced with theta burst deep brain stimulation of the fornix: a preliminary investigation with four cases. Brain. 2015;138:1833–42.
79. Hasan A, Hamada M, Nitsche MA, Ruge D, Galea JM, Wobrock T, et al. Direct-current-dependent shift of theta-burst-induced plasticity in the human motor cortex. Exp Brain Res Exp Hirnforschung Exp Cerebrale. 2012;217:15–23.
80. Tremblay S, Hannah R, Rawji V, Rothwell JC. Modulation of iTBS after-effects via concurrent directional TDCS: A proof of principle study. Brain Stimul. 2017;10:744–7.
81. Yamada Y, Sumiyoshi T. Neurobiological Mechanisms of Transcranial Direct Current Stimulation for Psychiatric Disorders; Neurophysiological, Chemical, and Anatomical Considerations. Front Hum Neurosci. 2021;15:631838.
82. Larson J, Munkácsy E. Theta-burst LTP. Brain Res. 2015;1621:38–50.
83. Edwards D, Cortes M, Datta A, Minhas P, Wassermann EM, Bikson M. Physiological and modeling evidence for focal transcranial electrical brain stimulation in humans: A basis for high-definition tDCS. Neuroimage. 2013;74:266–75.
84. Sullivan GM, Feinn R. Using Effect Size—or Why the P Value Is Not Enough. J Graduate Medical Educ. 2012;4:279–82.
85. Hassanzahraee M, Nitsche MA, Zoghi M, Jaberzadeh S. Determination of anodal tDCS duration threshold for reversal of corticospinal excitability: An investigation for induction of counter-regulatory mechanisms. Brain Stimul. 2020;13:832–9.
86. Vignaud P, Mondino M, Poulet E, Palm U, Brunelin J. Duration but not intensity influences transcranial direct current stimulation (tDCS) after-effects on cortical excitability. Neurophysiologie Clinique. 2018;48:89–92.
87. Hassanzahraee M, Nitsche MA, Zoghi M, Jaberzadeh S. Determination of anodal tDCS intensity threshold for reversal of corticospinal excitability: an investigation for induction of counter-regulatory mechanisms. Sci Rep-uk. 2020;10:16108.
88. Hoornweder SV, Vanderzande L, Bloemers E, Verstraelen S, Depestele S, Cuypers K, et al. The effects of transcranial direct current stimulation on upper-limb function post-stroke: A meta-analysis of multiple-session studies. Clin Neurophysiol. 2021;132:1897–918.
89. Ofori EK, Frimpong E, Ademiluyi A, Olawale OA. Ergometer cycling improves the ambulatory function and cardiovascular fitness of stroke patients—a randomized controlled trial. J Phys Ther Sci. 2019;31:211–6.
90. Cholewicki J, Panjabi MM, Khachatryan A. Stabilizing Function of Trunk Flexor-Extensor Muscles Around a Neutral Spine Posture. Spine. 1997;22:2207–12.
91. Bikson M, name A, Rahman A. Origins of specificity during tDCS: anatomical, activity-selective, and input-bias mechanisms. Frontiers in Human Neuroscience. 2013;7:688.
92. Flumeri GD, Aricò P, Borghini G, Sciaraffa N, Florio AD, Babiloni F. The Dry Revolution: Evaluation of Three Different EEG Dry Electrode Types in Terms of Signal Spectral Features, Mental States Classification and Usability. Sensors. 2019;19:1365.
93. Flöel A. tDCS-enhanced motor and cognitive function in neurological diseases. NeuroImage. 2014;85.
94. Fregni F, Pascual-Leone A. Technology Insight: noninvasive brain stimulation in neurology—perspectives on the therapeutic potential of rTMS and tDCS. Nature Clinical Practice Neurology. 2007;3:383–93.
95. Lefaucheur J-P, Aleman A, Baeken C, Benninger DH, Brunelin J, Lazzaro VD, et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): An update (2014–2018). Clin Neurophysiol. 2020;131:474–528.
96. Lin Y, Jiang W-J, Shan P-Y, Lu M, Wang T, Li R-H, et al. The role of repetitive transcranial magnetic stimulation (rTMS) in the treatment of cognitive impairment in patients with Alzheimer’s disease: A systematic review and meta-analysis. J Neurol Sci. 2019;398:184–91.
97. Gao F, Chu H, Li J, Yang M, Du L, Li J, et al. Repetitive transcranial magnetic stimulation for pain after spinal cord injury: a systematic review and meta-analysis. J Neurosurg Sci. 2017;61:514–22.
98. Schulz R, Gerloff C, Hummel FC. Non-invasive brain stimulation in neurological diseases. Neuropharmacology. 2013;64 C:579–87.
99. Molteni F, Gaffuri M, Guidotti M, Checcarelli N, Colombo M, Lorenzon C, et al. Efficiency in stroke management from acute care to rehabilitation: bedside versus telemedicine consultation. Eur J Phys Rehab Med. 2019;55.
100. Sarfo FS, Ulasavets U, Opare-Sem OK, Ovbiagele B. Tele-Rehabilitation after Stroke: An Updated Systematic Review of the Literature. J Stroke Cerebrovasc Dis. 2018;27:2306–18.