| 研究生: |
毛苡馨 Mao, I-Hsin |
|---|---|
| 論文名稱: |
晶圓級晶片尺寸封裝之熱疲勞可靠度分析 Thermomechanical Reliability Analysis for Wafer Level Chip Scale Packages (WLCSP) |
| 指導教授: |
周榮華
Chou, Jung-Hua |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系碩士在職專班 Department of Engineering Science (on the job class) |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 65 |
| 中文關鍵詞: | 晶圓級晶片尺寸構裝 、球下金屬層 、上板溫度循環試驗 、疲勞壽命 |
| 外文關鍵詞: | wafer level chip scale packages (WLCSP), under bump metallurgy (UBM), board-level temperature cycle test (TCT), fatigue life |
| 相關次數: | 點閱:184 下載:18 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要是針對重佈線型態(RDL)之晶圓級晶片尺寸構裝(WLCSP)有無球下金屬層(UBM)之結構進行可靠度試驗及有限元素模擬分析。本文採用構裝產品最常使用之上板溫度循環試驗作為可靠度之測試方法,並以ANSYS有限元素軟體分析兩種WLCSP於熱循環負載下之累積黏塑性應變能密度,並以Darveaux之能量基礎理論預測構裝體錫球接點之疲勞壽命,並將模擬值與實驗值作驗證。溫度循環試驗之結果顯示具有UBM層之WLCSP幾乎全數通過可靠度相關規範所要求之1000次循環,然而無UBM層之WLCSP則全數於1000次循環前失效,顯見省略了具有緩衝及接著效果之UBM層對於WLCSP構裝體仍為一有待克服之挑戰。
本文並針對未通過可靠度試驗之無UBM層WLCSP進行改善數值分析,先以田口式方法選定四個可能之影響因子進行熱疲勞壽命之探討,包括晶片厚度、第二絕緣層厚度、絕緣層楊氏模數及熱膨脹係數,結果顯示絕緣層楊氏模數對於疲勞壽命之影響最大,其次為晶片厚度,絕緣層熱膨脹係數亦有些許影響,而第二絕緣層厚度則未有明顯之影響性。其中絕緣層楊氏模數降低及晶片厚度減少皆可有效提升構裝體之疲勞壽命。接著,並針對錫球之形狀變化對疲勞壽命之影響進行研究,以第二絕緣層開口尺寸及錫球高度之變化進行模擬分析,由結果可知將絕緣層開口尺寸加大及錫球高度增加皆可提升疲勞壽命,且絕緣層開口尺寸對於疲勞壽命之影響較錫球高度為大。
In this research, the redistribution (RDL) typed wafer level chip scale packages (WLCSP) with and without under bump metallurgy (UBM) layers are evaluated by reliability test and finite element simulation analysis. The most commonly used reliability test method for packaging, the board-level temperature cycle test (TCT), is adopted and ANSYS finite element software is applied to evaluate the accumulated viscoplastic strain energy density under a cyclic thermal loading, which is further inputted in Darveaux’ energy based model to find the predicted solder joint fatigue life. The simulation results are then compared with the experimental results. The TCT results show that almost all samples of WLCSP with UBM layers pass 1000 cycles, meeting the mandated requirement. The samples of WLCSP without UBM layers all fail before 1000 cycles. It is apparent that omitting the UBM layers which can provide buffer and adhesion effects is still a challenge to be conquered for WLCSP.
The study further focuses on the parametric improvement analysis for the structure of WLCSP without UBM layers which fails the reliability test. The Taguchi method is first applied to evaluate the effects that some potential factors may have on the thermal fatigue life, including chip thickness, the second dielectric layer thickness, Young’s modulus and coefficient of thermal expansion (CTE) of the dielectric layer. The results show that Young’s modulus of the dielectric layer has the greatest effect followed by chip thickness. CTE of the dielectric layer may cause some effect, but the second dielectric layer thickness has insignificant effect. Both lowering the Young’s modulus of the dielectric layer and thinning the chip can effectively enhance the fatigue life of the package. Furthermore, the effects of solder ball shapes to the fatigue life are also studied. The second dielectric layer opening size and solder ball height are selected for parametric analysis, and the results indicate that a larger opening size and a higher ball can both enhance the solder joint fatigue life, and the effect of opening size is greater than that of ball height.
[1] WLP Report-2009 Update, Yole Developpment, 2009
[2] 楊志輝, "先進封裝與晶圓級封裝的基本原理", 2004, 取自:www.eie.tf.edu.tw/attach/1364176551.pdf
[3] K&S Flip Chip Division's Bumping Design Guide, pp.6-8, Sept. 2003
[4] "Ultra-Small Chip Size Package-Mounted Flash Memory for Wireless Communications Modules MBM29LV400TC/BC in SuperCSPTM", New Products, Vol.20, Fujitsu Inc., 2002
[5] R. Plieninger, "Challenges and New Solutions for High Integration IC Packaging", 1st Electronics Systemintegration Technology Conference (ESTC 2006), Sept. 2006
[6] 梁金條, "利用田口法分析對WLCSP含UBM厚度與錫球形狀之最佳化分析", 成功大學工程科學系碩士論文, 2005
[7] R. Darveaux, "Solder Joint Fatigue Life Model", Design and Reliability of Solders and Solder Interconnections, The Minerals, Metals and Materials Society (TMS), pp.213-218, 1997
[8] W. W. Lee, L. T. Nguyen and G. S. Selvaduray, "Solder Joint Fatigue Models: Review and Applicability to Chip Scale Packages", Microelectronics and Reliability, Vol. 40, pp.231-244, 2000
[9] R. Darveaux, J. Heckman, A. Syed and A. Mawer, "Solder Joint Fatigue Life of Fine Pitch BGAs-Impact of Design and Material Choices", Microelectronics Reliability, Vol. 40, Is. 7, pp.1117-1127, 2000
[10] 林勇志, "CSP封裝產品在循環熱應力作用下之可靠度分析", 國立成功大學機械工程所碩士論文, 2000
[11] D. H. Kim, P. Elenius and S. Barrett, "Solder Joint Reliability and Characteristics of Deformation and Crack Growth of Sn-Ag-Cu Versus Eutectic Sn-Pb on a WLP in a Thermal Cycling Test", IEEE Transactions on Electronics Packaging Manufacturing, Vol. 25, No. 2, April 2002
[12] R. Darveaux, "Effect of Simulation Methodology on Solder Joint Crack Growth Correlation and Fatigue Life Prediction", ASME Journal of Electronic Packaging, Vol. 124, No. 3, 2002
[13]劉振中, "無鉛錫球含多層金屬薄膜之晶圓級封裝結構應力分析", 成功大學工程科學系碩士論文, 2003
[14] T.Y. Tee, H.S. Ng, D. Yap, X. Baraton and Z. Zhong, "Board Level Solder Joint Reliability Modeling and Testing of TFBGA Packages for Telecommunication Applications", Microelectronics Reliability, Vol. 43, Is. 7, pp.1117-1123, 2003
[15] L. Nguyen, N. Kelkar, T. Kao, A. Prabhu and H. Takiar, "Wafer Level Chip Scale Packaging-Solder Joint Reliability", III-Vs Review, Vol. 17, IS. 5, p.25, 2004
[16] 劉智強, "無鉛UltraCSP電子元件之可靠度測試改善", 國立中山大學機械與機電工程學系碩士論文, 2004
[17] J. Lau and W. Dauksher, "Effect of Ramp-Time on the Thermal-Fatigue Life of SnAgCu Lead-Free Solder Joints", Electronic Components and Technology Conference, pp.1292-1298, 2005
[18] 徐志銘, "電子封裝之熱疲勞壽命模擬與測試", 逢甲大學航太與系統工程學系碩士論文, 2007
[19] H. C. Tsai, W. R. Jong and S. H. Peng, "The Comparison of IC Packages with/without Underfill of the Thermo-Mechanical Characteristics", pp.1444-1448, ANTEC, 2007
[20]夏育群, "晶圓級晶片尺寸封裝熱疲勞壽命之電腦模擬分析", 科學與工程技術期刊, 第三卷, 第二期, pp.19-25, 2007
[21] Frank Kao, Zhi Hao Tseng, Chun Sheng Ho, Stan Chen, Chang-Yi Lan and Feng Lung Chien, "A Study of Board Level Reliability Test with Bump Structure of WLCSP Lead-Free Solder Joints", Microsystems, Packaging, Assembly and Circuits Technology, IMPACT, 2007
[22]鍾啟生, "錫銀銅無鉛錫球溫度循環可靠度之研究", 成功大學機械工程學系碩士論文, 2007
[23] 謝岳哲, "以反應曲面法分析相同尺寸晶片堆疊式封裝之最佳化設計", 國立成功大學工程科學系碩士論文, 2008
[24] M. S. Kaysar Rahim, Tiao Zhou, Xuejun Fan and Guy Rupp, "Board Level Temperature Cycling Study of Large Array Wafer Level Package", IEEE Electronic Components and Technology Conference, 2009
[25] K. M. Chen, "Lead-Free Solder Material and Chip Thickness Impact on Board-Level Reliability for Low-K WLCSP", IEEE Transactions on Advanced Packaging, Vol. 33, No. 2, May 2010
[26] X.J. Fan, B. Varia, Q. Han, "Design and Optimization of Thermo-mechanical Reliability in Wafer Level Packaging", Microelectronics Reliability, Vol. 50, No. 4, pp.536-546, 2010
[27] L. Anand, "Constitutive Equation for The Rate-Dependent Deformation of Metals at Elevated Temperature", Transactions of The ASME, Vol. 104, pp.12-17, 1982
[28] T. H. Wang, C. C. Wang and Y. S. Lai, "Optimization of Board-Level Thermomechanical Reliability of High Performance Flip-Chip Package Assembly", Microelectronic Engineering, Vol. 85, pp.659–664, 2008
[29] Bret A. Zahn, "Finite Element Based Solder Joint Fatigue Life Predictions for a Same Die Stacked Chip Scale Ball Grid Array Package", SEMI/IEEE IEMT Symposium, pp.274-284, 2002
[30] Q. Wang et al., "Experimental Determination and Modification of Anand Model Constants for Pb-Free Material 95.5Sn4.0Ag0.5Cu", Proc. of International Conference on Thermal, Mechanical and Multi-Physics Simulation Experiments in Microelectronics and Micro-Systems, EuroSime 2007, pp.1-9