簡易檢索 / 詳目顯示

研究生: 陳柏軒
Chen, Bo-Shiuan
論文名稱: 應用微分轉換法分析奈米流體混合對流熱傳與熵增之特性
Application of Differential Transformation Method to Study on Mixed Convection Heat Transfer and Entropy Generation with Nanofluids
指導教授: 陳朝光
Chen, Cha’o-Kuang
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 114
中文關鍵詞: 微分轉換法(D.T.M)奈米流體混合對流熵增磁流體力學流
外文關鍵詞: Differential Transformation Method (D.T.M), nanofluids, mixed-convection, entropy generation, magnetohydrodynamic (MHD) flow
相關次數: 點閱:126下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文應用微分轉換法模擬47 nm- Al2O3/water奈米流體的流動與熱傳現象,將奈米流體視為單相。此外,透過熱力學第二定律的角度,探討熱力系統中的不可逆性,藉由熵增最小化的概念分析奈米流體在熱流元件設計上能源利用的效率。本文主要研究垂直通道間考慮黏性耗散之混合對流,並探討在流場中加入磁場效應所造成的影響。
    關於奈米流體在垂直通道間考慮黏性耗散之混合對流的熱傳表現與熵增,所模擬的混合對流無因次參數範圍為100≦Ξ≦500,而布林克曼數範圍為0.005≦Br≦0.08。在改變無因次參數的大小下,由模擬得到的結果顯示奈米流體在高溫壁面的局部紐賽數高於純水,且隨著濃度增加而提高。但在 較高時,奈米流體在低溫壁面的局部紐賽數反而小於純水。在熵增方面,奈米流體的平均熵增數小於純水。此外,發現使用不同奈米流體物性模型所得到的數值結果差異甚為明顯。
    接著,探討在流場中加入磁場效應對奈米流體的熱傳表現與熵增造成的影響。在磁流體力學流(magnetohydrodynamic flow)的研究裡,必須在動量方程式中考慮勞侖茲力,而在流體能量方程式中考慮因電磁場引起的焦耳熱。本文所模擬的哈特曼數較低(Hm=2),由模擬得到的結果顯示在磁場效應的影響下,奈米流體在高溫壁面的局部紐賽數提高,且隨著濃度增加而上升。然而在 較高時,奈米流體在低溫壁面的局部紐賽數反而變小,且隨著濃度增加而下降。在熵增方面,在流場中加入磁場效應則造成奈米流體的平均熵增數下降。

    This thesis applies the differential transformation method (D.T.M) to simulate the flow and heat transfer features of 47 nm- Al2O3/water nanofluids using single-phase approach. Besides, it probes into the irreversibility of the thermodynamic system based on the second-law analysis, also using the concept of Entropy Generation Minimization (EGM) to investigate the energy efficiency of the designs of devices with nanofluids. This study mainly analyzes mixed convection flow in a parallel-plate vertical channel with viscous dissipation effects; moreover, investigates the influence of flow with magnetic fields.
    For the thermal performance and entropy generation of nanofluids within a mixed convection flow with viscous dissipation effects in a vertical channel, the simulations are conducted at different mixed-convection dimensionless parameter (100≦Ξ≦500) and Brinkman number (0.005≦Br≦0.08). The results which are presented for various values of dimensionless parameters show the local Nusselt number at the hot wall with the use of nanofluids is higher than the use of water and increases with the raise of particle volume concentration. However, the local Nusselt number at the cool wall with the use of nanofluids is lower than the use of water when the Brinkman number is higher. When it comes to entropy generation, the average entropy generation number of nanofluids is lower than the average entropy generation number of water. Furthermore, using different models associated with the physical properties of a nanofluid reveals great deviations of computed results.
    Further the influence on the thermal performance and entropy generation of nanofluids by the effect of magnetic fields is investigated. In the study of the magnetohydrodynamic (MHD) flow, the transverse momentum balance equation has to take into account the Lorentz force and the energy balance equation has to take into account Joule heating. Simulations are conducted at low Hartmann number(Hm=2). After the simulation, the results show that under the influence of magnetic fields, the local Nusselt number at the hot wall of nanofluids is higher and increases with the raise of particle volume concentration. However, the local Nusselt number at the cool wall of nanofluids is lower and decreases with the raise of particle volume concentration when Brinkman number is higher. When it comes to entropy generation, the average entropy generation number of nanofluids is lower with magnetic fields.

    摘要...................................................................................................................I Abstract...........................................................................................................III 誌謝.................................................................................................................V 目錄................................................................................................................VI 表目錄............................................................................................................IX 圖目錄...........................................................................................................XII 符號說明..................................................................................................XVIII 第一章 緒論..................................................................................................1 1-1研究背景與動機...............................................................................1 1-2文獻回顧...........................................................................................2 1-2-1垂直通道之混合對流文獻回顧............................................3 1-2-2奈米流體的熱傳特性與熵增文獻回顧................................4 1-2-3微分轉換法文獻回顧............................................................7 1-3研究重點與內容架構.......................................................................8 第二章 微分轉換法......................................................................................9 2-1前言...................................................................................................9 2-2微分轉換的數學原理.......................................................................9 2-3微分轉換的運算.............................................................................13 2-4 T譜儲存法......................................................................................15 第三章 奈米流體數學模型........................................................................18 第四章 奈米流體混合對流熱傳與熵增分析............................................23 4-1前言.................................................................................................23 4-2垂直通道間考慮黏性耗散之混合對流.........................................24 4-2-1流場空間與基本假設.........................................................24 4-2-2統御方程式與邊界條件.....................................................25 4-2-3統御方程式無因次化.........................................................26 4-2-4熵增定理.............................................................................27 4-2-5微分轉換法.........................................................................29 4-2-6程式驗證.............................................................................31 4-2-7奈米流體的流場與熱傳特性.............................................33 4-2-8奈米流體的熵增.................................................................51 4-3垂直通道間加入磁場效應並考慮黏性耗散之混合對流.............74 4-3-1流場空間與基本假設........................................................74 4-3-2統御方程式與邊界條件....................................................75 4-3-3統御方程式無因次化........................................................76 4-3-4熵增定理.............................................................................77 4-3-5微分轉換法.........................................................................79 4-3-6程式驗證.............................................................................81 4-3-7奈米流體的流場與熱傳特性.............................................83 4-3-8奈米流體的熵增.................................................................93 第五章 結論與建議..................................................................................104 5-1本文總結.......................................................................................104 5-2未來研究方向與建議...................................................................106 參考文獻......................................................................................................108

    Barletta, A. "Laminar Mixed Convection with Viscous Dissipation in a Vertical Channel." International Journal of Heat and Mass Transfer 41, no. 22 (1998): 3501-3513.
    Baytas, A. C. "Optimization in an Inclined Enclosure for Minimum Entropy Generation in Natural Convection." Journal of Non-Equilibrium Thermodynamics 22, no. 2 (1997): 145-155.
    Baytas, A. C. "Entropy Generation for Natural Convection in an Inclined Porous Cavity." International Journal of Heat and Mass Transfer 43, no. 12 (2000): 2089-2099.
    Bejan, A. Entropy Generation Through Heat and Fluid Flow. Wiley, New York (1982): 109-114.
    Bejan, A., Tsatsaronis, G. and Moran, M. Thermal Desigh and Optimization. Wiley, New York (1996).
    Bejan, A. "Fundamentals of Exergy Analysis, Entropy Generation Minimization, and the Generation of Flow Architecture." International Journal of Energy Research 26, no. 7 (2002): 545-565.
    Brinkman, H. C. "The Viscosity of Concentrated Suspensions and Solutions." Journal of Chemical Physics 20, no. 4 (1952): 571-571.
    Buongiorno, J. "Convective Transport in Nanofluids." Journal of Heat Transfer-Transactions of the Asme 128, no. 3 (2006): 240-250.
    Chen, C. K. and Ho, S. H. "Application of Differential Transformation to Eigenvalue Problems." Applied Mathematics and Computation 79, no. 2-3 (1996): 173-188.
    Chen, C. K. and Ho, S. H. "Free Vibration Analysis of Non-Uniform Timoshenko Beams Using Differential Transform." Transactions of the Canadian Society for Mechanical Engineering 22, no. 3 (1998): 231-250.
    Chen, C. K., Lai, H. Y. and Liu, C. C. "Numerical Analysis of Entropy Generation in Mixed Convection Flow with Viscous Dissipation Effects in Vertical Channel." International Communications in Heat and Mass Transfer 38, no. 3 (2011): 285-290.
    Chen, C. K., Yang, Y. T. and Chang, K. H. "Entropy Generation of Radiation Effect on Laminar-Mixed Convection Along a Wavy Surface." Heat and Mass Transfer 47, no. 4 (2011): 385-395.
    Chen, C. L. and Liu, Y. C. "Solution of Two-Point Boundary-Value Problems Using the Differential Transformation Method." Journal of Optimization Theory and Applications 99, no. 1 (1998): 23-35.
    Chiou, J. S. and Tzeng, J. R. "Application of the Taylor Transform to Nonlinear Vibration Problems." Journal of Vibration and Acoustics-Transactions of the Asme 118, no. 1 (1996): 83-87.
    Chon, C. H., Kihm, K. D., Lee, S. P. and Choi, S. U. S. "Empirical Correlation Finding the Role of Temperature and Particle Size for Nanofluid (Al2o3) Thermal Conductivity Enhancement." Applied Physics Letters 87, no. 15 (2005).
    Corcione, M. "Heat Transfer Features of Buoyancy-Driven Nanofluids inside Rectangular Enclosures Differentially Heated at the Sidewalls." International Journal of Thermal Sciences 49, no. 9 (2010): 1536-1546.
    Datta, A. "Entropy Generation in a Confined Laminar Diffusion Flame." Combustion Science and Technology 159, (2000): 39-56.
    Falahat, A. and Vosough, A. "Effect of Nanofluid on Entropy Generation and Pumping Power in Coiled Tube." Journal of Thermophysics and Heat Transfer 26, no. 1 (2012): 141-146.
    Famouri, M. and Hooman, K. "Entropy Generation for Natural Convection by Heated Partitions in a Cavity." International Communications in Heat and Mass Transfer 35, no. 4 (2008): 492-502.
    Grosan, T. and Pop, I. "Fully Developed Mixed Convection in a Vertical Channel Filled by a Nanofluid." Journal of Heat Transfer-Transactions of the Asme 134, no. 8 (2012).
    Hajipour, M. and Dehkordi, A. M. "Mixed Convection in a Vertical Channel Containing Porous and Viscous Fluid Regions with Viscous Dissipation and Inertial Effects: A Perturbation Solution." Journal of Heat Transfer-Transactions of the Asme 133, no. 9 (2011).
    Hajipour, Mastaneh and Asghar Molaei Dehkordi. "Analysis of Nanofluid Heat Transfer in Parallel-Plate Vertical Channels Partially Filled with Porous Medium." International Journal of Thermal Sciences 55, (2012): 103-113.
    Hamadah, T. T. and Wirtz, R. A. "Analysis of Laminar Fully-Developed Mixed Convection in a Vertical Channel with Opposing Buoyancy." Journal of Heat Transfer-Transactions of the Asme 113, no. 2 (1991): 507-510.
    Hamilton, R. L. and Crosser, O. K. "Thermal Conductivity of Heterogeneous 2-Component Systems." Industrial & Engineering Chemistry Fundamentals 1, no. 3 (1962): 187-&.
    Ibanez, G., Cuevas, S. and de Haro, M. U. "Optimization of a Magnetohydrodynamic Flow Based on the Entropy Generation Minimization Method." International Communications in Heat and Mass Transfer 33, no. 3 (2006): 295-301.
    Khorasanizadeh, H., Nikfar, M. and Amani, J. "Entropy Generation of Cu-Water Nanofluid Mixed Convection in a Cavity." European Journal of Mechanics B-Fluids 37, (2013): 143-152.
    Liu, C. C. and Lo, C. Y. "Numerical Analysis of Entropy Generation in Mixed-Convection Mhd Flow in Vertical Channel." International Communications in Heat and Mass Transfer 39, no. 9 (2012): 1354-1359.
    Liu, D. and Yu, L. Y. "Single-Phase Thermal Transport of Nanofluids in a Minichannel." Journal of Heat Transfer-Transactions of the Asme 133, no. 3 (2011).
    Mah, W. H., Hung, Y. M. and Guo, N. Q. "Entropy Generation of Viscous Dissipative Nanofluid Flow in Microchannels." International Journal of Heat and Mass Transfer 55, no. 15-16 (2012): 4169-4182.
    Mahmud, S. and Fraser, R. A. "The Second Law Analysis in Fundamental Convective Heat Transfer Problems." International Journal of Thermal Sciences 42, no. 2 (2003): 177-186.
    Mahmud, S. and Fraser, R. A. "Magnetohydrodynamic Free Convection and Entropy Generation in a Square Porous Cavity." International Journal of Heat and Mass Transfer 47, no. 14-16 (2004): 3245-3256.
    Masoumi, N., Sohrabi, N. and Behzadmehr, A. "A New Model for Calculating the Effective Viscosity of Nanofluids." Journal of Physics D-Applied Physics 42, no. 5 (2009).
    Matin, M. H., Dehsara, M. and Abbassi, A. "Mixed Convection Mhd Flow of Nanofluid over a Non-Linear Stretching Sheet with Effects of Viscous Dissipation and Variable Magnetic Field." Mechanika, no. 4 (2012): 415-423.
    Matin, M. H., Nobari, M. R. H. and Jahangiri, P. "Entropy Analysis in Mixed Convection Mhd Flow of Nanofluid over a Non-Linear Stretching Sheet." Journal of Thermal Science and Technology 7, no. 1 (2012): 104-119.
    Memari, M., Golmakani, A. and Dehkordi, A. M. "Mixed-Convection Flow of Nanofluids and Regular Fluids in Vertical Porous Media with Viscous Heating." Industrial & Engineering Chemistry Research 50, no. 15 (2011): 9403-9414.
    Mintsa, H. A., Roy, G., Nguyen, C. T. and Doucet, D. "New Temperature Dependent Thermal Conductivity Data for Water-Based Nanofluids." International Journal of Thermal Sciences 48, no. 2 (2009): 363-371.
    Mohammed, H. A., Al-Aswadi, A. A., Yusoff, M. Z. and Saidur, R. "Buoyancy-Assisted Mixed Convective Flow over Backward-Facing Step in a Vertical Duct Using Nanofluids." Thermophysics and Aeromechanics 19, no. 1 (2012): 33-52.
    Nguyen, C. T., Desgranges, F., Roy, G., Galanis, N., Mare, T., Boucher, S. and Mintsa, H. A. "Temperature and Particle-Size Dependent Viscosity Data for Water-Based Nanofluids-Hysteresis Phenomenon." International Journal of Heat and Fluid Flow 28, no. 6 (2007): 1492-1506.
    Pan, B. and Li, B. Q. "Effect of Magnetic Fields on Oscillating Mixed Convection." International Journal of Heat and Mass Transfer 41, no. 17 (1998): 2705-2710.
    Pishkar, I. and Ghasemi, B. "Cooling Enhancement of Two Fins in a Horizontal Channel by Nanofluid Mixed Convection." International Journal of Thermal Sciences 59, (2012): 141-151.
    Poots, G. "Laminar Natural Convection Flow in Magneto-Hydrodynamics." International Journal of Heat and Mass Transfer 3, no. 1 (1961): 1-25.
    Sarkar, S., Ganguly, S. and Dalal, A. "Analysis of Entropy Generation During Mixed Convective Heat Transfer of Nanofluids Past a Square Cylinder in Vertically Upward Flow." Journal of Heat Transfer-Transactions of the Asme 134, no. 12 (2012).
    Setayesh, A. and Sahai, V. "Heat-Transfer in Developing Magnetohydrodynamic Poiseuille Flow and Variable Transport-Properties." International Journal of Heat and Mass Transfer 33, no. 8 (1990): 1711-1720.
    Shariat, M., Akbarinia, A., Nezhad, A. H., Behzadmehr, A. and Laur, R. "Numerical Study of Two Phase Laminar Mixed Convection Nanofluid in Elliptic Ducts." Applied Thermal Engineering 31, no. 14-15 (2011): 2348-2359.
    Sposito, G. and Ciofalo, M. "One-Dimensional Mixed Mhd Convection." International Journal of Heat and Mass Transfer 49, no. 17-18 (2006): 2939-2949.
    Tao, L.N. "On Combined Free and Forced Convection in Channels." Journal Name: Journal of Heat Transfer (U.S.); Journal Volume: Vol: 82; Other Information: Orig. Receipt Date: 31-DEC-60, (1960): Medium: X; Size: Pages: 233-8.
    Umavathi, J. C. and Malashetty, M. S. "Magnetohydrodynamic Mixed Convection in a Vertical Channel." International Journal of Non-Linear Mechanics 40, no. 1 (2005): 91-101.
    Woods, L. C. The Thermodynamic of Fluid Systems. Oxford University Press, Oxford (1975).
    Xu, H. and Pop, I. "Fully Developed Mixed Convection Flow in a Vertical Channel Filled with Nanofluids." International Communications in Heat and Mass Transfer 39, no. 8 (2012): 1086-1092.
    Xuan, Y. M. and Roetzel, W. "Conceptions for Heat Transfer Correlation of Nanofluids." International Journal of Heat and Mass Transfer 43, no. 19 (2000): 3701-3707.
    Yu, L. T. and Chen, C. K. "Application of Taylor Transformation to Optimize Rectangular Fins with Variable Thermal Parameters." Applied Mathematical Modelling 22, no. 1-2 (1998): 11-21.
    張桂豪, "波形板上對流熱傳與熵增之研究." 國立成功大學機械工程學系博士論文, (2011).
    張駿愷, "應用晶格波茲曼法模擬奈米流體對流問題." 國立成功大學機械工程學系碩士論文, (2012).
    朱心平, "應用微分轉換法於強非線性物理系統之研究." 國立成功大學機械工程學系博士論文, (2004).
    賴馮祥, "奈米流體對流熱傳之數值研究." 國立成功大學機械工程學系博士論文, (2011).

    無法下載圖示 校內:立即公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE