簡易檢索 / 詳目顯示

研究生: 王則堯
Wang, Tse-Yao
論文名稱: 氧化物對磷酸鈣骨水泥的影響
N/A
指導教授: 朱建平
Ju, Chien-Ping
陳瑾惠
Chern Lin, Jiin-Huey
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 101
中文關鍵詞: 添加氧化物骨水泥磷酸鈣
外文關鍵詞: Calcium Phosphate, CPC, Metal Oxide
相關次數: 點閱:60下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    科技的進步,在帶來高品質的生活享受的同時,往往會帶來許多意外傷害,如外傷、撕裂傷甚至骨折等。因此在這類外科手術極度發展的同時,外科手術所使用的生醫材料的開發以及應用,成為現代醫學發展的重點之一。
    鈣磷系骨水泥,也就是calcium phosphate cement ,簡稱CPC。CPC最主要就是由鈣離子Ca2+再輔以磷酸根PO43-所組成的。這類的水泥具有良好的生物相容性,而且在生醫上面的應用也非常的廣泛。
    本實驗是以原本的鈣源磷酸鈣粉末以及磷源帶有PO43-溶液的CPC(calcium phosphate cement)水泥,並添加微量氧化物MO或是其他種類的氧化物作為改善鈣磷系骨水泥性質。
    在帶有PO43-的磷酸銨濃度為3M﹙標準濃度﹚時,添加MO的CPC試片抗壓強度約為45MPa,無添加MO的CPC試片約為40MPa。少量添加MO對於使用3M含有PO43-溶液的CPC試片,抗壓強度有明顯的增加。在不同粉液比的測試中,加入MO的CPC試片對於濃度分別為3M、2M、1.5M的磷酸銨,抗壓強度沒有明顯的變化。對於添加及未添加MO之CPC浸泡於Hanks’ sol.天數的多寡,浸泡天數越多,強度越弱。在SEM的觀察中發現,CPC表面的morphology對於試片的抗壓強度沒有太大的影響與關聯。然而隨著磷酸銨溶液濃度的減少,添加少量的MO對於CPC試片的抗壓強度,則沒有顯著的強度提升。

    總目錄 摘要.......................................................I 目錄.....................................................III 圖目錄...................................................VI 表目錄...................................................XII 第一章 理論基礎與回顧...................................01 1-1-1 前言...........................................01 1-1-2 生醫材料的簡介.................................01 1-1-2-1 非陶瓷類生醫材料...............................01 1-1-2-2 生醫陶瓷…......................................02 1-1-2-2-1可吸收性生醫陶瓷.................................03 1-1-2-2-2近惰性生醫陶瓷...................................04 1-1-2-2-3表面活性生醫陶瓷.................................05 1-1-2-3 生醫玻璃.........................................05 1-2-1鈣磷系骨水泥.........................................06 1-2-2 TTCP的性質.......................................08 1-2-2-1 TTCP的生成.....................................08 1-2-2-1-1 使用燒結法生成TTCP.............................08 1-2-2-1-2 冷卻速率對於TTCP生成的影響....................09 1-2-2-2 TTCP與DCPD/DCPA的反應.........................09 1-2-2-3 TTCP在水中與磷酸溶液中的反應....................11 1-2-2-4 Na2HPO4以及NaH2PO4對TTCP/DCPA的影響..........12 1-2-2-5 研磨時間對於TTCP的影響..........................12 1-2-3 氧化鎂﹙MgO﹚的性質...............................13 1-2-3-1 MgO的生成.......................................13 1-2-3-1-1 MgO的特性與製作...............................13 1-2-3-1-2 Sol-gel法製作MgO...............................14 1-2-3-2 MgO的結構.....................................14 1-2-3-3 Mg2+的錯合物....................................15 1-2-4 HA添加金屬氧化物﹙燒結法﹚......................16 1-2-5 CaSO4˙2H2O在磷酸溶液中添加金屬氧化物...........16 1-2-6 長時間浸泡在SBF﹙人工體液﹚對CPC的影響.........17 1-2-7 實驗目的.........................................18 第二章 實驗步驟與方法...................................34 2-1 實驗原料的準備......................................34 2-2 實驗流程............................................34 2-2-1 CPC的試片製作.....................................35 2-2-1-1 加入MO的實驗流程................................35 2-2-1-2 不同L/P且添加MO的CPC的製作....................36 2-2-1-3 浸泡於Hanks’ sol.天數的影響........................37 2-2-2 混有MO的CPC性質................................37 2-2-2-1 抗壓強度測試.....................................37 2-2-2-2 X光繞射分析﹙XRD﹚...............................38 2-2-2-3 EDS能譜儀分析...................................38 2-2-2-4 掃描式電子顯微鏡分析﹙SEM﹚......................39 2-2-2-5 FT-IR霍式紅外線光譜儀............................39 2-2-2-6 Working time與setting time的測試....................40 第三章 實驗結果與討論...................................52 3-1 不同磷酸銨濃度且添加MO的CPC之測試................52 3-1-1 抗壓強度結果........................................52 3-1-2 不同磷酸銨濃度的XRD分析...........................52 3-1-3 FT-IR紅外線光譜分析.................................53 3-2 使用不同L/P比﹙粉液比﹚對於對於添加MO的CPC的影響...59 3-2-1 不同L/P比對於抗壓強度的影響.........................59 3-2-2 不同L/P比的XRD分析................................60 3-2-3 不同磷酸銨濃度的SEM分析............................61 3-3 在人工體液放置長時間對於CPC的影響..................69 3-3-1 對於抗壓強度的影響..................................69 3-3-1-1 2M磷酸銨對於抗壓強度的影響.......................69 3-3-1-2 3M 磷酸銨對於抗壓強度的影響......................69 3-3-2 長時間浸泡之XRD分析...............................70 3-3-3 長時間浸泡之FT-IR分析..............................71 3-3-4 長時間浸泡之SEM分析...............................72 3-4 其他性質的探討.......................................84 3-4-1 使用3M磷酸銨的CPC的性質比較.....................84 3-4-2 使用2M 磷酸銨的CPC的性質比較.....................84 3-4-3 使用1.5M 磷酸銨的CPC的性質比較...................85 3-4-4 使用1M 磷酸銨的CPC的性質比較.....................86 第四章 結論.............................................89 參考文獻.................................................91 附錄.....................................................94

    參考文獻
    Chow Laurence C.,; “Development of self-setting calcium phosphate ce- ments”; The Centennial Memorial Issue of The Ceramic Society of Japan; 99; pp. 954-964 (1991)

    Chow Laurence C., Markovic M., S.A. Frukhtbeyn, Takagi S.; “Hydrolysis of tetracalcium phosphate under a near-constant-composition codition—effects of pH and particle size”; Biomaterials; 26; pp. 393-401 (2005)

    Clegg W., Horsburgh L., Mulvey Robert E., Ross Michael J.;Rowlings René B., Wilson V., “Synthesis and solid-state structures of three magnesium diamide complexes derived from RN(H)CH2CH2N(H)R diamine precur- sors(R=Ph or PHCH2)”; Polyhedron; Vol. 17; Nos. 11-12; pp. 1923-1930 (1998)

    Fulmer Mark T., Brown Paul W.; “Effects of Na2HPO4 and NaH2PO4 on hydroxyapatite formation”; Journal of Biomedical Materials Research; Vol. 27; pp. 1095-1102 (1993)

    Gbureck U., Barralet Jake E., Spatz K., Grover Liam M., Thull R.; “Ionic modification of calcium phosphate cement viscosity.Part I: hydroxyapatite injection and strength improvement of apatite cement”; Biomaterials; 25; pp. 2187-2195 (2004)

    Gomez-Vega J. M., Saiz E., Tomsia A. P., Marshall G. W. and, Marshall S. J., Biomaterials, V. 21, p.105-111 (2000)

    Gulková D., Solcová O., Zdrazil M.; “Preparation of MgO catalytic support in shaped mesoporous high surface area form”; Microporous And Mesopo- rous Materials; 76; pp. 137-149 (2004)

    Guo Dagang, Xu Kewei, Han Yong; “Influence of cooling modes on purity of solid-state synthesized tretacalcium phosphate”; Materials Science & Engine- ering B; 116; pp. 175-181 (2005)

    Hench L. L. and Ethridge E. C., “Biomaterial” A cademic Press. Inc. (1982)

    Kim T.N., Feng Q.L., Kim J.O., Wu J., Wang H., Chen G.C., Cui F.Z.; “Antimicrobial effects of metal ions (Ag+,Cu2+,Zn2+) in hydroxyapatite”; Journal of Materials Science:Materials in Medicine; Vol. 9; pp. 129-134 (1998)

    Kieback B., Neubrand A., Riedel H.;” Processing techniques for functionally graded materials”; Materials Science & Engineering A; 362 ; pp. 81-105 (2003)

    Liao Chun-Jen, Lin Feng-Huei, Chen Ko-Shao, Sun Jui-Sheng; “Thermal decomposition and reconstitution of hydroxyapatite in air atmosphere”; Biomaterials; 20; pp.1807-1813 (1999)

    Matczak-Jon E., Kurzak B., Kamecka A., Kafarski P.; “Interactions of zinc(II), magnesium(II) and calcium(II) with aminomethane-1,1-diphosphonic acids in aqueous solutions”; Polyhedron; 21; 321-332 (2002)

    Manjubala I., Sampath Kumar T.S.; “Effect of TiO2-Ag2O additives on the formation of calcium phosphate based functionally graded bioceramics”; Bio- materials; 21; pp. 1995-2002 (2000)

    Matsuya Y.,Matsuya S., Antonucci Joseph M., Takagi S., Chow Laurence C., Akamine A.; “Effect of powder grinding on hydroxyapatite formation in a polymeric calcium phosphate cement prepared from tetracalcium phosphate and poly(methyl vinyl ether-maleic acid)”; Biomaterials; Vol. 20; pp. 691-697 (1999)

    Nie X., Leyland A. and Matthews A., Surf. Coat. Technol. V.125, p.407-414 (2000)

    Park J. B., “Biomaterials Science and Engineering” Plennm Inc. (1990)

    Queiroz A.C., Santos J.D., Monteiro F.J., Prado da Silva M.H.; “Dissolution studies of hydroxyapatite and glass-reinforced hydroxyapatite ceramics”; Material Characterization; 50; pp. 197-202 (2003)

    Rashad M.M., Mahmoud M.H.H., Ibrahim I.A., Abdel-Aal E.A.; “Crystal- lization of calcium sulfate dehydrate under simulated conditions of phos- phoric acid production in the presence of aluminum and magnesium ions”; Journal of Crystal Growth; 267; pp. 372-379 (2004)

    Reed-Hill Robert E., Abbaschian R; “Physical Metallurgy Principles, Third Edition”; PWS Publishing company; Boston; pp.479-481 (1994)

    Ruys A.J., Wei M., Sorrell C.C., Dickson M.R., Brandwood A., Milthorpe B.K.; “Sintering effects on the strength of hydroxyapatite”; Biomaterials; 16; pp. 409-415 (1995)

    Scarano D., Bertarione S., Federico C., Spoto G., Zecchina A.; “Imaging polycrystalline and smoke MgO surfaces with atomic force microscopy: a case study of high resolution image on a polycrystalline oxide”; Surface Science; 570; pp. 155-166 (2004)

    Salinas A.J., Roman J., Vallet-Regi M., Oliveria J. M., Correia R. N. and Fernandes M. H., Biomaterials, V. 21, p.251-257 (2000)

    Takagi S., Chow L.C., Ishikawa K.; “Formation of hydroxyapatite in new calcium phosphate cements”; Biomaterials; 19; pp. 1593-1599 (1998)

    Vallet-Regi M., Rodriguez-Lorenzo L.M., Salinas A.J.; “Synthesis and characterisation of calcium deficient apatite”; Solid State Ionics; Vol. 101- 103; pp. 1279-1285 (1997)

    Yen S. K., Mater. Chem. Phys., V.63 p.256-262 (2000)

    洪敏雄,林峰輝,王盈錦,”生醫陶瓷” 陶瓷技術手冊(下) 中華民國產業科技發展協進會 (1994)

    鄭文賢;“磷酸鈣粉末製程及性質研究”; 成功大學碩士論文; 2004

    下載圖示 校內:2010-07-27公開
    校外:2015-07-27公開
    QR CODE