簡易檢索 / 詳目顯示

研究生: 林佳緯
Lin, Chia-Wei
論文名稱: 鋁-鎂合金摩擦攪拌點銲之組織特徵及拉剪破斷負荷研究
The Research of Microstructure Characteristic and Tensile Shear Failure Load of Friction-Stir-Spot-Welded Al-Mg Alloy
指導教授: 陳立輝
Chen, Li-Hui
呂傳盛
Lui, Truan-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 84
中文關鍵詞: 摩擦攪拌點銲拉剪破斷負荷韋伯解析
外文關鍵詞: friction stir spot welding, tensile shear failure load, Weibull analysis
相關次數: 點閱:71下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要使用的材料為Al-Mg系5083鋁合金,為一固溶強化材,具有強度佳、加工易、耐蝕能力強等優點,常被應用於汽車側構骨架之鈑材。但接合時,如使用傳統的電阻點銲進行鋁合金的接合,會因為鋁合金的高電熱傳導性而造成耗電量大、電極壽命降低的問題,故傳統電阻點銲不適用於接合鋁合金,因此可改用摩擦攪拌點銲(FSSW)來進行鋁合金的接合。
    本研究探討進行FSSW時,攪拌頭進給深度、摩擦攪拌轉速、摩擦點銲時間對於銲點的拉剪破斷負荷(TSFL)和點銲組織特徵的影響,並且利用相對於5083材合金成分較少的5052材來做為對照。最後,應用韋伯可靠度解析對所得到的實驗數據進行可靠度的分析。
    實驗結果顯示,當點銲時間增加時TSFL隨之上升,增加的趨勢會漸趨減緩;隨攪拌轉速上升,TSFL會先陡升再緩降,存在一最適宜的轉速可以讓TSFL達到最高值,進給深度2.5mm時最適宜轉速為2000rpm,進給深度提高至3.5mm則增為3000rpm;進給深度的增加可以大幅的提高TSFL,明顯減少達到預定的TSFL值所需的點銲時間,但進給深度的範圍亦有上限,如過高除了TSFL會略降之外還會造成試片彎曲變形的情形;合金成分較高的5083材本身強度優於5052材,經由摩擦攪拌點銲後所得的TSFL也較高。
    研究中定義了五個特徵值,皆與TSFL值呈高度的正相關。當同時考慮測量的效率和相關性大小時則以有效接合長度「Lbond」為最佳的特徵值,相關係數也高達0.959。
    韋伯可靠度解析的結果,本研究所有實驗參數韋伯模數m值皆大於1,屬於磨耗破壞型。當攪拌轉速在最適宜轉速以上,並且有足夠的點銲時間時,韋伯模數m值皆可達3以上,呈常態分布。進給深度的提高雖能大幅提高TSFL但對可靠度並無明顯助益;足夠的點銲時間可以使可靠度上升;適宜的轉速下可靠度亦較佳。而綜合所有結果,本研究最佳參數為進給深度3.5mm、攪拌轉速3000rpm、點銲時間10s,點銲耗時短,且可靠度和TSFL皆高。

    Al-Mg series aluminum alloy 5083 is the major material in this study. It is a solid-solution strengthening material. Because of its high mechanical strength, easier manufacturing and good corrosion resistance, it has been used in inner panels of side carcass of automobile body. However, traditional resistance spot welding is not suitable for aluminum alloy joining due to higher electric and thermal conductivities of aluminum alloy. It will lead to higher energy consumption and electrode life reduction. Therefore, friction stir spot welding(FSSW) is take the place of resistance spot welding in aluminum alloy joining.
    In this research, by changing the pin plunge depth, rotation speed and welding time, we will discuss the effect in tensile shear failure load (TSFL) and microstructure characteristic. And then, we will use 5052, an aluminum alloy which’s composition is lower, to compare with 5083 alloy to understand the effect of composition. Finally, we analyze the reliability of experiment data by using Welbull reliability analysis.
    The result of tensile test shows that the TSFL increases with increasing welding time, but the increasing tendency decrease with increasing welding time. When rotation speed increases, TSFL will increases sharply in the beginning and decreases slightly thereafter. TSFL will be a maximum at a most suitable rotation speed. As pin plunge depth is 2.5mm, the most suitable rotation speed is 2000rpm. And as pin plunge depth is 3.5mm, the most suitable rotation speed is 3000rpm. Increasing pin plunge depth will promote TSFL largely and reduce time of welding for predetermined TSFL. But the depth is also limited. And the mechanical strength of lower composition alloy 5052 is lower than 5083 no matter before welding or after welding.
    There are five microstructure characteristic value is defined for this research. Their correlation coefficient with TSFL are all larger than 0.94. However, as we also consider to the measure efficiency, “Lbond” is the best microstructure characteristic value. And its correlation coefficient is 0.959.
    The results of Weibull analysis show that the Weibull moduli of all the experiment parameters are wear-out failure modes. And the Weibull modili are higher than 3 when rotation speed is higher than the most suitable rotation speed and welding time is plentiful. It means that they are normal distribution. Higher pin plunge depth lead TSFL higher but has no contribution to enhance reliability. And plentiful welding time make TSFL and reliability be higher. Concluding above all the conditons, 3.5 mm pin plunge depth and 3000rpm rotation speed with 10s welding time is the best condition in this study.

    總目錄 中文摘要 I Abstract III 誌謝 V 總目錄 VII 表目錄 IX 圖目錄 X 第一章 前言 1 第二章 文獻回顧 2 2-1 Al-Mg系合金概說 2 2-2摩擦攪拌銲接及摩擦攪拌點銲 3 2-3材料可靠度與破壞率分析及韋伯可靠度解析介紹 4 2-3-1 材料可靠度之工程統計意義 4 2-3-2 韋伯分布函數 (Weibull Distribution Function) 7 2-3-3 韋伯三參數之物理意義 7 2-3-4 韋伯三參數之求法 9 第三章 實驗步驟與方法 19 3-1摩擦攪拌點銲 19 3-2 OM觀察:金相及有效接合長度 20 3-3微硬度測試 21 3-4拉剪破斷測試 21 3-5可靠度解析 22 第四章 實驗結果 31 4-1各實驗參數下TSFL的變化趨勢 31 4-2金相觀察 32 4-3有效接合長度及有效接合面積之觀察與計算 33 4-5有效接合長度及有效接合面積之觀察與計算 33 4-5韋伯三參數之計算及各函數之繪圖 34 第五章 討論 63 5-1 TSFL與Lbond、Abond、Hvmax及AHv之相關性探討 63 5-2韋伯可靠度解析討論 64 5-2-1 韋伯三參數與各實驗參數之相關性 64 5-2-2 可靠度優劣判定之綜合討論 66 5-2-3 5083材和5052材可靠度比較 67 5-3最佳參數之討論 68 第六章 結論 80 參考文獻 81 表目錄 表3-1 5083及5052鋁合金之化學組成 23 表3-2 FSSW參數條件一覽表 24 表4-1 不同成分鋁合金之TSFL比較 35 表4-2 各實驗參數之有效接合長度「Lbond 」 36 表4-3 各實驗參數之有效接合面積「Abond」 37 表4-4 各實驗參數之微硬度高於BM的面積「AHv」 38 表4-5 進給深度3.5mm 之TSFL韋伯分析結果 (5083材) 39 表4-6 進給深度2.5mm 之TSFL韋伯分析結果 (5083材) 40 表4-7 5052材之TSFL韋伯分析結果 41 圖目錄 圖2-1 Al-Mg二元相圖 12 圖2-2 各函數示意圖 13 圖2-3 不同韋伯模數m之機率密度函數f(x) 14 圖2-4 不同韋伯模數m之可靠度R(x) 15 圖2-5 不同韋伯模數m之破壞率λ(x) 16 圖2-6 不同尺度模數η之機率密度函數f(x) 17 圖2-7 不同尺度參數與機率密度函數f (x)之關係圖 18 圖3-1 實驗架構圖 25 圖3-2 摩擦攪拌點銲示意圖 26 圖3-3 摩擦攪拌點銲步驟示意圖 27 圖3-4 FSSW攪拌頭尺寸示意圖 28 圖3-5 有效接合長度及有效接合面積表示圖 29 圖3-6 拉剪測試試片示意圖及實際照片 30 圖4-1 進給深度2.5mm各轉速 TSFL(Ave)與點銲時間之關係圖 42 圖4-2 進給深度3.5mm各轉速 TSFL(Ave)與點銲時間之關係圖 43 圖4-3 5083母材光學顯微組織圖 44 圖4-4 5052母材光學顯微組織 45 圖4-5 5083材摩擦攪拌(a)橫截面立體顯微鏡照片 (b)分區示意圖 46 圖4-6 5083材橫截面SZ區微觀組織(OM) 47 圖4-7 5083材橫截面TMAZ區微觀組織(OM) 48 圖4-8 5083材橫截面HAZ區微觀組織(OM) 49 圖4-9 5083材橫截面BZ區微觀組織(OM) 50 圖4-10 有效接合長度光學顯微鏡觀察 51 圖4-11 進給深度3.5mm各參數之有效接合面積「Lbond 」變化趨勢 52 圖4-12 進給深度3.5mm各參數之有效接合面積「Abond」變化趨勢53 圖4-13 進給深度3.5mm 轉速2000rpm點銲時間7s 微硬度分布 54 圖4-14進給深度3.5mm 轉速2500rpm點銲時間7s 微硬度分布 55 圖4-15進給深度3.5mm 轉速3000rpm點銲時間7s 微硬度分布 56 圖4-16進給深度3.5mm 轉速3500rpm點銲時間7s 微硬度分布 57 圖4-17進給深度3.5mm各參數之「Hv1.0max」變化趨勢 58 圖4-18進給深度3.5mm各參數之「Hv2.0max」變化趨勢 59 圖4-19進給深度3.5mm各參數之「AHv」變化趨勢 60 圖4-20進給深度2.5mm各參數條件之f(x)、λ(x)及R(x) 61 圖4-21進給深度3.5mm各參數條件之f(x)、λ(x)及R(x) 62 圖5-1 TSFL與有效接合長度「Lbond」之線性迴歸圖 69 圖5-2 TSFL與有效接合面積「Abond」之線性迴歸圖 70 圖5-3 TSFL與微硬度最大值「Hv1.0max」之線性迴歸圖 71 圖5-4 TSFL與微硬度最大值「Hv2.0max」之線性迴歸圖 72 圖5-5 TSFL與大於母材微硬度之區域面積「AHv」線性迴歸圖 73 圖5-6 兩進給深度下TSFL與有效接合長度「Lbond」之線性迴歸 74 圖5-7 進給深度3.5mm之TSFL與可靠度關係圖 75 圖5-8 進給深度3.5mm之TSFL與破壞率關係圖 76 圖5-9 不同進給深度 之TSFL與破壞率關係圖 77 圖5-10 不同成分鋁合金之TSFL與可靠度關係 78 圖5-11 5052材和5083材之TSFL與破壞率關係 79

    1.S. Lathabai, M. J. Painter, G.M.D Cantin, V. K.
    Tyagi, “Friction Spot Joining of an Extruded Al-Mg-Si
    Alloy”, Scripta Materialia, Vol.55, pp.899-902, 2006.
    2.L. F. Mondolfo, “Aluminun Alloys Structure & Properties”,
    Chapter 4-3, pp.806-842, 1976.
    3.I. J. Polmear, “Light Alloys Metallurgy of the Light
    Metals”, pp.15- 123, 1980.
    4.John E. Hatch, “Aluminum Properties and Physical
    Metallurgy” Chapter 9, pp.356-367, 1985.
    5.林春億,「摩擦攪拌製程對5083鋁合金等軸晶鑄造材顯微組織與拉伸性質
    之影響」,國立成功大學料科學與工程研究所碩士論文,民國95年。
    6.Taylor Lyman, Howard E. Boyer, “Metallography, Structure
    and Phase Diagrams”, Metals Handbook, Vol. 8, pp. 251-
    434, 1973.
    7.田榮璋、王祝堂,「鋁合金及其加工手冊」,中南大學出版社,第二篇,
    2000。
    8.M. W. Thomas, E. D. Nicholas, “Friction Stir Welding for
    the Trans- porttation Industries”, Meterials & Desigh,
    Vol. 18, No. 46, pp. 269- 273, 1997.
    9.R. W. Fonda, J. F. Bingert, K. J. Colligan, “Development
    of Grain Structure during Friction Stir Welding”, Sripta
    Materialia, 51, pp.243- 248, 2004.
    10.Wang Deqing, S. Liu , “Study of Friction Stir Welding of
    Al”, Journal of Materials Science, 39, pp. 1689-1693,2004
    11.W. M. Thomas, E. D. Nicholas, J. C. Needham, M. C.
    Murch, P. Temple-Smith, C. J. Dawes (TWI) “Improvements
    Relating Annealing Phenomena”, Pergamon, Oxford, UK,
    1996.
    12.O. T. Miding, E. J. Morley, A. Sandvik, “Friction Stir
    Welding”, European Patent Application 0 752 926 B1.
    13.F. J. Humpheys, M. Hathrly, “Recrystallization and
    Related Annealing Phenomena”, Pergamon, Oxford, UK, 1996.
    14.K. V. Jata, S. L. Semiatin, “Continuous Dynamic
    Recrystallization during Friction Stir Welding of High
    Strength Aluminum Alloys”, Scripta Materialia, Vol.43,
    pp. 743-749, 2000.
    15.Livan Faratmi, Gianluca Buffa, “CDRX Modeling in
    Friction Stir Welding of Aluminum Alloys”, Inrernational
    Journal of Machine Tools & Manufacture, Vol. 45, pp.1188-
    1194, 2005.
    16.C. G. Rhodes, M. W. Mahoney, M. H. Bingel, M.
    Cakabrese, “Fine- Grain Evolution in Friction-Stir
    Processed 7050 Aluminum”, Scripta Materialia, Vol.48,
    pp.1451-1455, 2003.
    17.Jing-Qing Su, Tracy W. Nelson, Colins J.
    Sterling, “Micristructure Evolution durin FSW/FSP of
    High Strength Aluminum Alloys”, Materials Science and
    Engineering A305, pp.277-286, 2005.
    18.Yutaka S. Sato, Mitsunori Urata, Hiroyuki Kokawa,
    Keisuke Ikeda, “Hall-Petch Relatonship in Friction Stir
    Welds of Equal Channel Angular-Prossed Aluminum Alloys”,
    Materials Science and Engineering A354, pp.298-305, 2003.
    19.H. Fujii, M. Maeda, K. Nogi, “Heterogeneity of
    Mechanical Properties of Friction Stir Welds Joints of
    1050-H24 Aluminum Alloy”, Journal of Materials Science
    Letters, Vol. 22,pp.441-444, 2003.
    20.D.-A. Wang, S.-c. Lee, “Microstructure and Failure
    Mechanisms of Friction Stir Spot Welds of Aluminum 6061-
    T6 Sheets”. Journal of Materials Processing Technology,
    Vol.186,pp.291-297, 2007.
    21.Mats Ericsson, L.-Z. Jin, Rolf Sandstrom, “Fatigue
    Properties of Friction Stir Overlap Welds”,
    International Journal of Fatique, Vol.29, pp.57-68, 2007.
    22.Koji Tanaka, Masaki Kumagai, Hideo Yoshida, “Dissimilar
    Joining of Aluminum Alloy and Steel Sheets by Friction
    Stir Spot Welding”, Journal of Japan Institute of Light
    Metals, Vol.56, No.6, pp.317-322, 2006.
    23.A.Gerlich, P. Su, T. H. North, “Tool penetration during
    Friction Stir Spot Welding of Al and Mg Allots”, Journal
    of Material Science, Vol. 40, pp.6473-6481, 2005.
    24.D. Mitlin, V. Rodmilovic, T. Pan, J. Chen, Z. Feng, M.
    L. Santella, “Structure-Properties Relation in Spot
    Friction Welded(also known as Friction Stir Spot Welded)
    6111 Aluminum”, Material Science and Engineering, A441,
    pp. 79-96, 2006.
    25.S. Bozzi, A.L. Helbert-Etter, T. Baudin, V. Klosek, J.G.
    Kerbiguet, B. Criqui, “Influence of FSSW parameters on
    fracture mechanisms of 5182 aluminum welds”, Journal of
    Materials Processing Technology Vol.210, pp. 1429–1435,
    2010.
    26.P. D. T. O’Connor, John Wiley & Sons, “Practical
    Peliability Engineering”, 3rd Edition, Chap. 1-6, 1991.
    27.“ Rebility in Engineering Design”, K. C. Sons, John
    Wiley & sons, Chap. 1-6, 1977.
    28. “Mechanical Rebility”, A. D. S. Cater, John Wiley &
    Sons, 2nd Edition, Chap.2 and 11, 1986.
    29.B.Faucher, W.R.Tyson, “On the Determination of Weibull
    Parameters”, J. Mater, Sci. Let., Vol.7, pp.1199-1203,
    1988.
    30.S. H. Dai, M. O. Wang, “Reliability Analysis in
    Engineering Application”, Van Nostrand Reinhold, pp.353-
    358, 1992.
    31.X. D. Li., L. Edwards, “Theoretical Modeling of Fatigue
    Thrshold foe Aluminum Alloys”, Eng. Fract. Mech.,
    Vol.20, pp.35-48, 1996.
    32.萊希納、貝爾契編,吳振環主譯,「機械產品的可靠性」,機械工業出版
    (1994),第三章。
    33.真壁肇編,陳耀茂譯,「可靠性工程入門」,中華民國品質管制學會, 第
    八章,1989。
    34.信賴性研究委員會編,可靠度研究小組譯,「實用可靠度」,先鋒企業管
    理發展中心,1984。

    下載圖示 校內:2013-08-26公開
    校外:2013-08-26公開
    QR CODE