| 研究生: |
林佳緯 Lin, Chia-Wei |
|---|---|
| 論文名稱: |
鋁-鎂合金摩擦攪拌點銲之組織特徵及拉剪破斷負荷研究 The Research of Microstructure Characteristic and Tensile Shear Failure Load of Friction-Stir-Spot-Welded Al-Mg Alloy |
| 指導教授: |
陳立輝
Chen, Li-Hui 呂傳盛 Lui, Truan-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 摩擦攪拌點銲 、拉剪破斷負荷 、韋伯解析 |
| 外文關鍵詞: | friction stir spot welding, tensile shear failure load, Weibull analysis |
| 相關次數: | 點閱:71 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要使用的材料為Al-Mg系5083鋁合金,為一固溶強化材,具有強度佳、加工易、耐蝕能力強等優點,常被應用於汽車側構骨架之鈑材。但接合時,如使用傳統的電阻點銲進行鋁合金的接合,會因為鋁合金的高電熱傳導性而造成耗電量大、電極壽命降低的問題,故傳統電阻點銲不適用於接合鋁合金,因此可改用摩擦攪拌點銲(FSSW)來進行鋁合金的接合。
本研究探討進行FSSW時,攪拌頭進給深度、摩擦攪拌轉速、摩擦點銲時間對於銲點的拉剪破斷負荷(TSFL)和點銲組織特徵的影響,並且利用相對於5083材合金成分較少的5052材來做為對照。最後,應用韋伯可靠度解析對所得到的實驗數據進行可靠度的分析。
實驗結果顯示,當點銲時間增加時TSFL隨之上升,增加的趨勢會漸趨減緩;隨攪拌轉速上升,TSFL會先陡升再緩降,存在一最適宜的轉速可以讓TSFL達到最高值,進給深度2.5mm時最適宜轉速為2000rpm,進給深度提高至3.5mm則增為3000rpm;進給深度的增加可以大幅的提高TSFL,明顯減少達到預定的TSFL值所需的點銲時間,但進給深度的範圍亦有上限,如過高除了TSFL會略降之外還會造成試片彎曲變形的情形;合金成分較高的5083材本身強度優於5052材,經由摩擦攪拌點銲後所得的TSFL也較高。
研究中定義了五個特徵值,皆與TSFL值呈高度的正相關。當同時考慮測量的效率和相關性大小時則以有效接合長度「Lbond」為最佳的特徵值,相關係數也高達0.959。
韋伯可靠度解析的結果,本研究所有實驗參數韋伯模數m值皆大於1,屬於磨耗破壞型。當攪拌轉速在最適宜轉速以上,並且有足夠的點銲時間時,韋伯模數m值皆可達3以上,呈常態分布。進給深度的提高雖能大幅提高TSFL但對可靠度並無明顯助益;足夠的點銲時間可以使可靠度上升;適宜的轉速下可靠度亦較佳。而綜合所有結果,本研究最佳參數為進給深度3.5mm、攪拌轉速3000rpm、點銲時間10s,點銲耗時短,且可靠度和TSFL皆高。
Al-Mg series aluminum alloy 5083 is the major material in this study. It is a solid-solution strengthening material. Because of its high mechanical strength, easier manufacturing and good corrosion resistance, it has been used in inner panels of side carcass of automobile body. However, traditional resistance spot welding is not suitable for aluminum alloy joining due to higher electric and thermal conductivities of aluminum alloy. It will lead to higher energy consumption and electrode life reduction. Therefore, friction stir spot welding(FSSW) is take the place of resistance spot welding in aluminum alloy joining.
In this research, by changing the pin plunge depth, rotation speed and welding time, we will discuss the effect in tensile shear failure load (TSFL) and microstructure characteristic. And then, we will use 5052, an aluminum alloy which’s composition is lower, to compare with 5083 alloy to understand the effect of composition. Finally, we analyze the reliability of experiment data by using Welbull reliability analysis.
The result of tensile test shows that the TSFL increases with increasing welding time, but the increasing tendency decrease with increasing welding time. When rotation speed increases, TSFL will increases sharply in the beginning and decreases slightly thereafter. TSFL will be a maximum at a most suitable rotation speed. As pin plunge depth is 2.5mm, the most suitable rotation speed is 2000rpm. And as pin plunge depth is 3.5mm, the most suitable rotation speed is 3000rpm. Increasing pin plunge depth will promote TSFL largely and reduce time of welding for predetermined TSFL. But the depth is also limited. And the mechanical strength of lower composition alloy 5052 is lower than 5083 no matter before welding or after welding.
There are five microstructure characteristic value is defined for this research. Their correlation coefficient with TSFL are all larger than 0.94. However, as we also consider to the measure efficiency, “Lbond” is the best microstructure characteristic value. And its correlation coefficient is 0.959.
The results of Weibull analysis show that the Weibull moduli of all the experiment parameters are wear-out failure modes. And the Weibull modili are higher than 3 when rotation speed is higher than the most suitable rotation speed and welding time is plentiful. It means that they are normal distribution. Higher pin plunge depth lead TSFL higher but has no contribution to enhance reliability. And plentiful welding time make TSFL and reliability be higher. Concluding above all the conditons, 3.5 mm pin plunge depth and 3000rpm rotation speed with 10s welding time is the best condition in this study.
1.S. Lathabai, M. J. Painter, G.M.D Cantin, V. K.
Tyagi, “Friction Spot Joining of an Extruded Al-Mg-Si
Alloy”, Scripta Materialia, Vol.55, pp.899-902, 2006.
2.L. F. Mondolfo, “Aluminun Alloys Structure & Properties”,
Chapter 4-3, pp.806-842, 1976.
3.I. J. Polmear, “Light Alloys Metallurgy of the Light
Metals”, pp.15- 123, 1980.
4.John E. Hatch, “Aluminum Properties and Physical
Metallurgy” Chapter 9, pp.356-367, 1985.
5.林春億,「摩擦攪拌製程對5083鋁合金等軸晶鑄造材顯微組織與拉伸性質
之影響」,國立成功大學料科學與工程研究所碩士論文,民國95年。
6.Taylor Lyman, Howard E. Boyer, “Metallography, Structure
and Phase Diagrams”, Metals Handbook, Vol. 8, pp. 251-
434, 1973.
7.田榮璋、王祝堂,「鋁合金及其加工手冊」,中南大學出版社,第二篇,
2000。
8.M. W. Thomas, E. D. Nicholas, “Friction Stir Welding for
the Trans- porttation Industries”, Meterials & Desigh,
Vol. 18, No. 46, pp. 269- 273, 1997.
9.R. W. Fonda, J. F. Bingert, K. J. Colligan, “Development
of Grain Structure during Friction Stir Welding”, Sripta
Materialia, 51, pp.243- 248, 2004.
10.Wang Deqing, S. Liu , “Study of Friction Stir Welding of
Al”, Journal of Materials Science, 39, pp. 1689-1693,2004
11.W. M. Thomas, E. D. Nicholas, J. C. Needham, M. C.
Murch, P. Temple-Smith, C. J. Dawes (TWI) “Improvements
Relating Annealing Phenomena”, Pergamon, Oxford, UK,
1996.
12.O. T. Miding, E. J. Morley, A. Sandvik, “Friction Stir
Welding”, European Patent Application 0 752 926 B1.
13.F. J. Humpheys, M. Hathrly, “Recrystallization and
Related Annealing Phenomena”, Pergamon, Oxford, UK, 1996.
14.K. V. Jata, S. L. Semiatin, “Continuous Dynamic
Recrystallization during Friction Stir Welding of High
Strength Aluminum Alloys”, Scripta Materialia, Vol.43,
pp. 743-749, 2000.
15.Livan Faratmi, Gianluca Buffa, “CDRX Modeling in
Friction Stir Welding of Aluminum Alloys”, Inrernational
Journal of Machine Tools & Manufacture, Vol. 45, pp.1188-
1194, 2005.
16.C. G. Rhodes, M. W. Mahoney, M. H. Bingel, M.
Cakabrese, “Fine- Grain Evolution in Friction-Stir
Processed 7050 Aluminum”, Scripta Materialia, Vol.48,
pp.1451-1455, 2003.
17.Jing-Qing Su, Tracy W. Nelson, Colins J.
Sterling, “Micristructure Evolution durin FSW/FSP of
High Strength Aluminum Alloys”, Materials Science and
Engineering A305, pp.277-286, 2005.
18.Yutaka S. Sato, Mitsunori Urata, Hiroyuki Kokawa,
Keisuke Ikeda, “Hall-Petch Relatonship in Friction Stir
Welds of Equal Channel Angular-Prossed Aluminum Alloys”,
Materials Science and Engineering A354, pp.298-305, 2003.
19.H. Fujii, M. Maeda, K. Nogi, “Heterogeneity of
Mechanical Properties of Friction Stir Welds Joints of
1050-H24 Aluminum Alloy”, Journal of Materials Science
Letters, Vol. 22,pp.441-444, 2003.
20.D.-A. Wang, S.-c. Lee, “Microstructure and Failure
Mechanisms of Friction Stir Spot Welds of Aluminum 6061-
T6 Sheets”. Journal of Materials Processing Technology,
Vol.186,pp.291-297, 2007.
21.Mats Ericsson, L.-Z. Jin, Rolf Sandstrom, “Fatigue
Properties of Friction Stir Overlap Welds”,
International Journal of Fatique, Vol.29, pp.57-68, 2007.
22.Koji Tanaka, Masaki Kumagai, Hideo Yoshida, “Dissimilar
Joining of Aluminum Alloy and Steel Sheets by Friction
Stir Spot Welding”, Journal of Japan Institute of Light
Metals, Vol.56, No.6, pp.317-322, 2006.
23.A.Gerlich, P. Su, T. H. North, “Tool penetration during
Friction Stir Spot Welding of Al and Mg Allots”, Journal
of Material Science, Vol. 40, pp.6473-6481, 2005.
24.D. Mitlin, V. Rodmilovic, T. Pan, J. Chen, Z. Feng, M.
L. Santella, “Structure-Properties Relation in Spot
Friction Welded(also known as Friction Stir Spot Welded)
6111 Aluminum”, Material Science and Engineering, A441,
pp. 79-96, 2006.
25.S. Bozzi, A.L. Helbert-Etter, T. Baudin, V. Klosek, J.G.
Kerbiguet, B. Criqui, “Influence of FSSW parameters on
fracture mechanisms of 5182 aluminum welds”, Journal of
Materials Processing Technology Vol.210, pp. 1429–1435,
2010.
26.P. D. T. O’Connor, John Wiley & Sons, “Practical
Peliability Engineering”, 3rd Edition, Chap. 1-6, 1991.
27.“ Rebility in Engineering Design”, K. C. Sons, John
Wiley & sons, Chap. 1-6, 1977.
28. “Mechanical Rebility”, A. D. S. Cater, John Wiley &
Sons, 2nd Edition, Chap.2 and 11, 1986.
29.B.Faucher, W.R.Tyson, “On the Determination of Weibull
Parameters”, J. Mater, Sci. Let., Vol.7, pp.1199-1203,
1988.
30.S. H. Dai, M. O. Wang, “Reliability Analysis in
Engineering Application”, Van Nostrand Reinhold, pp.353-
358, 1992.
31.X. D. Li., L. Edwards, “Theoretical Modeling of Fatigue
Thrshold foe Aluminum Alloys”, Eng. Fract. Mech.,
Vol.20, pp.35-48, 1996.
32.萊希納、貝爾契編,吳振環主譯,「機械產品的可靠性」,機械工業出版
(1994),第三章。
33.真壁肇編,陳耀茂譯,「可靠性工程入門」,中華民國品質管制學會, 第
八章,1989。
34.信賴性研究委員會編,可靠度研究小組譯,「實用可靠度」,先鋒企業管
理發展中心,1984。