簡易檢索 / 詳目顯示

研究生: 黃昱嘉
Huang, Yu-Chia
論文名稱: 都市幹道連鎖號誌設計分析-深度強化學習與Synchro之比較分析
Analysis of Deep Reinforcement Learning and Synchro For Urban Arterial Signal Coordinations
指導教授: 胡大瀛
Hu, Ta-Yin
學位類別: 碩士
Master
系所名稱: 管理學院 - 交通管理科學系碩士在職專班
Department of Transportation and Communication Management Science(on-the-job training program)
論文出版年: 2022
畢業學年度: 111
語文別: 中文
論文頁數: 64
中文關鍵詞: 人工智慧深度強化學習幹道連鎖最佳化
外文關鍵詞: Artificial Intelligence, Deep Reinforcement Learning, Optimization of Arterial Signal Coordination
相關次數: 點閱:114下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要I 目錄VII 表目錄VIII 圖目錄IX 第一章 緒論1 1.1 研究背景與動機1 1.2 研究目的1 1.3 研究範圍2 1.4 研究流程4 第二章 文獻回顧6 2.1幹道號誌連鎖交通控制6 2.1.1 幹道號誌設計基本原則6 2.1.2 幹道群組劃分原則8 2.2強化學習應用於號誌時制策略10 2.3號誌時制最佳化軟體14 2.4 幹道績效度量指標19 2.5 小結20 第三章 研究方法21 3.1研究架構21 3.2 強化學習演算法24 3.3 Synchro演算法29 3.4 模擬建構30 3.4.1 SUMO模擬軟體30 3.4.2 模擬建構說明31 3.5 連鎖幹道成效分析32 3.6 小結33 第四章 幹道號誌之設計與比較分析34 4.1 路網基礎環境設定34 4.1.1 SUMO模擬環境設定34 4.1.2 交通需求設定36 4.2 深度強化學習於號誌最佳化設計38 4.3 實驗結果43 4.3.1深度強化學習演算法訓練過程43 4.3.2 Synchro演算法產出最佳化時制45 4.3.3幹道號誌績效分析49 4.4 小結59 第五章 結論與建議60 5.1 結論60 5.2 建議62 參考文獻63

    1、Arsava, T., Xie, Y., Gartner, N. H., & Mwakalonge, J. (2014). Arterial traffic signal coordination utilizlar traffic origin-destination information. 17th International IEEE Conference on Intelligent Transportation Systems (ITSC),
    2、Christofa, E., Ampountolas, K., & Skabardonis, A. (2016). Arterial traffic signal optimization: A person-based approach. Transportation Research Part C: Emerging Technologies, 66, 27-47.
    3、Genders, W., & Razavi, S. (2016). Using a deep reinforcement learning agent for traffic signal control. arXiv preprint arXiv:1611.01142.
    4、Hao, W., Lin, Y., Cheng, Y., & Yang, X. (2018). Signal progression model for long arterial: intersection grouping and coordination. IEEE Access, 6, 30128-30136.
    5、Jing, B., Lin, Y., Shou, Y., Lu, K., & Xu, J. (2020). Pband: A General Signal Progression Model With Phase Optimization Along Urban Arterial. IEEE Transactions on Intelligent Transportation Systems.
    6、Lan, C.-L., & Chang, G.-L. (2016). Optimizing signals for arterials experiencing heavy mixed scooter-vehicle flows. Transportation Research Part C: Emerging Technologies, 72, 182-201.
    7、Li, L., Lv, Y., & Wang, F.-Y. (2016). Traffic signal timing via deep reinforcement learning. IEEE/CAA Journal of Automatica Sinica, 3(3), 247-254.
    8、Li, Z., Yu, H., Zhang, G., Dong, S., & Xu, C.-Z. (2021). Network-wide traffic signal control optimization using a multi-agent deep reinforcement learning. Transportation Research Part C: Emerging Technologies, 125, 103059.
    9、Liang, X., Du, X., Wang, G., & Han, Z. (2019). A deep reinforcement learning network for traffic light cycle control. IEEE Transactions on Vehicular Technology, 68(2), 1243-1253.
    10、 Liu, M., Deng, J., Xu, M., Zhang, X., & Wang, W. (2017). Cooperative deep reinforcement learning for tra ic signal control. Proc. 23rd ACM SIGKDD Conf. Knowl. Discovery Data Mining (KDD),
    11、Rasheed, F., Yau, K.-L. A., Noor, R. M., Wu, C., & Low, Y.-C. (2020). Deep Reinforcement Learning for Traffic Signal Control: A Review. IEEE Access.
    12、Stevanovic, A., Martin, P. T., & Stevanovic, J. (2007). VisSim-based genetic algorithm optimization of signal timings. Transportation Research Record, 2035(1), 59-68.
    13、Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.
    14、Van der Pol, E., & Oliehoek, F. A. (2016). Coordinated deep reinforcement learners for traffic light control. Proceedings of Learning, Inference and Control of Multi-Agent Systems (at NIPS 2016).
    15、Watkins, C. J., & Dayan, P. (1992). Q-learning. Machine learning, 8(3-4), 279-292.
    16、Wei, H., Chen, C., Zheng, G., Wu, K., Gayah, V., Xu, K., & Li, Z. (2019). Presslight: Learning max pressure control to coordinate traffic signals in arterial network. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
    17、Wu, X., Tian, Z., Hu, P., & Yuan, Z. (2012). Bandwidth optimization of coordinated arterials based on group partition method. Procedia-Social and Behavioral Sciences, 43, 232-244.
    18、Zhang, L., Song, Z., Tang, X., & Wang, D. (2016). Signal coordination models for long arterials and grid networks. Transportation Research Part C: Emerging Technologies, 71, 215-230.
    19、石家豪. (2001). 幹道號誌續進式時制設計模式之開發研究,碩士論文,國立成功大學.
    20、何志宏. (2003). 交通工程人才培訓計畫 (2). 交通部運輸研究所.
    21、吳沛儒. (2020). 應用AI技術進行交通數據蒐集暨號誌控制之研究. 交通部運輸研究所.
    22、吳悅慈. (2011). 幹道群組適應性號誌控制模式之開發研究,碩士論文,國立成功大學.
    23、卓訓榮、曾明德、周幼琳. (2018). 台灣號誌控制軟體(PaSO)示範驗證與推廣計畫. 國立交通大學.
    24、林良泰、黃華宇、黃啟倡. (2012). 幹道系統延滯最小下續進路口數最大化模式之研究. 運輸學刊, 24(4), 529-554.
    25、林良泰、謝長明、古新全. (2010). 高飽和下幹道號誌系統續進路口數最大化模式. 中國土木水利工程學刊, 22(3), 319-331.
    26、胡大瀛、林婉婷、梁力元. (2014). 幹道號誌連鎖之減碳效益比較與分析:以小東路為例. 中華民國運輸學會103年,P.1587-1604.
    27、陳一昌、張開國、張仲杰、黃惠隆、黃文鑑、張景平、翁忠川. (2007). 交通號誌時制重整計畫(1)-標準作業程序建立. 交通部運輸研究所.
    28、陳麗雯, & 胡大瀛. (2020). 都市幹道連鎖時制設計之研究與實例分析. 土木水利, 47(4), 40-50.
    29、黃秀雲. (2007). 都市路網號誌連鎖最佳化之研究,碩士論文,國立成功大學.
    30、李卓育(2022). 深度強化學習法於交通號誌連鎖之應用,碩士論文,國立成功大學.

    無法下載圖示 校內:2026-01-30公開
    校外:2026-01-30公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE