簡易檢索 / 詳目顯示

研究生: 劉芳晴
Liu, Fang-Cing
論文名稱: 耦合歐拉-拉格朗日法在三維邊坡穩定性的應用
Application of the coupled Eulerian-Lagrangian method on three-dimensional slope stability analysis
指導教授: 洪瀞
Hung, Ching
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 87
中文關鍵詞: 有限元素法耦合歐拉-拉格朗日法(CEL)邊坡穩定性分析三維幾何形狀對邊坡之影響
外文關鍵詞: Coupled Eulerian-Lagrangian (CEL), three-dimensional, slope stability analysis, finite element analysis
相關次數: 點閱:164下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在邊坡穩定性分析中,由於其簡單性和廣泛的適用性,通常採用二維(2D)分析技術,然而所有邊坡破壞本質上都是三維(3D),特別是在幾何形狀複雜的邊坡中了解其破壞機制尤為重要。進行3D邊坡穩定性分析安全係數與邊坡破壞面是更為合理的方式。在邊坡穩定性分析中,極限平衡法(LEM)和有限元法(FEM)已經被廣泛使用。LEM僅滿足靜力學方程,不考慮應變和位移兼容性使其充滿侷限性。當FEM承受較大變形時可能會導致明顯的網格變形,從而引發收斂困難,並且在邊坡破壞之前可能會計算中止,基於上述理由,邊坡的安全係數有時會出現數值誤差和不確定性問題。耦合Eulerian-Lagrangian(CEL)有限元素法可以使材料流過固定的網格,而不受網格變形的影響,本研究將其應用於三維邊坡穩定性分析中。
    在這項研究中,結合使用強度折減法與CEL有限元素法於三維邊坡穩定性分析,首先使用典型的3D邊坡來驗證數值CEL FEM模型的可行性,其使用ABAQUS/Explicit。使用能量(總塑性耗散)來定義邊坡破壞,取得邊坡的安全係數,使用塑性應變來判斷破壞面的位置。
    進行了幾個不同的三維幾何邊坡算例,將其給予不同的邊界條件(unrestrained、semi-restrained和fully restrianed),將其結果的安全係數與FEM之結果進行破壞面與安全係數的對比,其中也包含了FEM不適合計算的高度非線性算例。
    對比結果,在非高度非線性的情況下,FEM與CEL FEM不論是安全係數還是邊坡的破壞面結果並沒有明顯的差異,本研究證明了CEL FEM在三為邊坡穩定性分析中是個可靠的工具,其可分析FEM無法分析的高度非線性問題,能更準確地獲得安全係數與破壞面。

    The slopes are 3D in nature. Therefore, the solution form 3D slope stability analysis will be more appropriate than the solution form 2D slope stability analysis. It is more reasonable to analyze the factor of safety(FOS) and slip surfaces of slope failure of the slope in 3D.There is highly nonlinear in FEM slope stability analysis , obvious mesh distortion may occur, resulting in convergence difficulty and calculation abort before slope failure. Therefore, numerical errors and uncertainties may occur. The Coupled Eulerian-Lagrangian finite element method (CEL FEM) uses fixed mesh, which without mesh deformation.
    First validate a typical simple 3D slope numerical modeling using the CEL FEM combined with the shear strength-reduction technique. The FOS obtained from CEL FEM is very similar to the FOS obtained from the other method. After the validation, various types of slopes (i.e. turning corners, convex- and concave-shaped surfaces) with various boundary conditions (unrestrained, semi-restrained, and fully restrained) are carefully conducted to examine the 3D slope stability. A slope with a weak layer is an example of highly nonlinearity.
    The FOS and the slip surfaces of slope failure form CEL FEM are quite similar with the result form the traditional fem. Besides, the maximum FOS difference is less 2.4%. As a conclusion, the CEL FEM in 3D slope stability analysis can obtain credible FOS and the slip surfaces of slope failure.

    第一章 緒論 1 1.1 前言 1 1.2 研究動機及目的 1 1.3 研究方法 2 1.4 論文格式與內容 2 第二章 文獻回顧 4 2.1 極限平衡法(LIMIT EQUILIBRIUM METHOD) 4 2.2 數值分析法 12 2.2.1 有限差分法 12 2.2.2 有限元素法 12 2.2.3 大變形分析方式 14 2.3 耦合歐拉-拉格朗日法(COUPLED EULERIAN–LAGRANGIAN (CEL)) 15 2.4 剪力強度折減法(SHEAR STRENGTH REDUCTION) 16 2.4.1 邊坡破壞之定義 16 第三章 研究方法 19 3.1 ABAQUS簡介 19 3.1.1 顯式(EXPLICIT)計算方式 19 3.1.2 隱式(IMPLICIT)計算方式 21 3.2 耦合歐拉-拉格朗日法計算介紹(CEL) 22 3.2.1 歐拉公式 22 3.2.2 算子分裂(OPERATOR SPLITTING) 23 3.2.3 拉格朗日步驟(LAGRANGIAN STEP) 24 3.2.4 塑性行為的計算: 25 3.3 CEL用於邊坡穩定性分析 26 3.3.1 剪力牆度折減法(SHEAR STRENGTH REDUCTION) 26 3.3.2 定義邊坡破壞 27 3.3.3 邊界條件介紹 29 第四章 模型驗證 32 4.1 拉格朗日網格的有限元素法邊坡分析(FEM) 33 4.1.1 建模步驟 33 4.1.2 網格劃分 33 4.1.3 驗證結果 34 4.2 耦合歐拉-拉格朗日網格的有限元素法(CEL FEM)邊坡分析 36 4.2.1 建模步驟 36 4.2.2 網格劃分影響性分析 37 4.2.3 驗證結果 39 第五章 結果與討論 41 5.1 簡單三維幾何邊坡 41 5.1.1 H:L=1:2簡單三維邊坡 42 5.1.2 垂直簡單三維邊坡 50 5.1.3 帶有軟土層之高度非線性三維邊坡 55 5.2 帶有轉角之邊坡 59 5.2.1 帶有轉角之H:L=1:2邊坡 59 5.2.2 帶有轉角之垂直邊坡 69 5.3 特殊形狀邊坡 74 5.3.1 弧形轉彎邊坡(TURNING ARC) 74 5.3.2 凹型邊坡(CONCAVE-SHAPED) 78 第六章 結論與建議 80 6.1 結論 80 6.2 建議 81 參考文獻 82

    1. 史卜濤(2016),邊坡穩定性分析的物質點強度折減法,岩土工程學報,2016年第9期1678-1684頁。
    2. 周翠英(2003),邊坡變形破壞過程的大變形有限元分析,岩土力學,2003年第4期644-647頁。
    3. 張元良(2004),以剪力強度折減法進行邊坡穩定分析之研究,國立中興大學,博士論文。
    4. 陳志昌(2001),FLAC 程式應用於土壤邊坡穩定分析,國立中央大學,碩士論文。
    5. 曾惠蒂(2005),變形分析應用於邊坡穩定分析之研究,國立成功大學,碩士論文。
    6. 劉開富(2001),彈塑性土質邊坡的ALE方法有限元分析,岩土力學,2011年第S1期680-685頁。
    7. 蔡路軍、馬建軍(2011) ,基於ABAQUS的邊坡失穩綜合判據法,武漢科技學報,第34卷第5期。
    8. 闕衍智(2013),以三維分離元素法模擬大型邊坡受地震力作用下影響之研究,國立成功大學碩士論文。
    9. 潘如蕙(2007) ,強度折減法應用於層狀土壤邊坡之穩定性研究,國立成功大學碩士論文。
    10. ABAQUS (2012). ABAQUS Documentation, Version 6.12: ABAQUS /CAE User’s Manual. Simlulia, Providence, RI.
    11. Benson D. J & Okazawa S. (2004). Contact in a multi-material Eulerian finite element formulation. Comput Methods Appl Mech Eng 193:4277-4298.
    12. Benson D.J. (1992). Computational methods in Lagrangian and Eulerian hydrocodes. Comput Methods Appl Mech Eng 99:235–394.
    13. Benson D.J. (1995). A multi-material Eulerian formulation for the efficient solution of impact and penetration problems. Comput Mech 15: 558–571.
    14. Benson D.J. (1997). A mixture theory for contact in multi-material Eulerian formulations. Comput Methods Appl Mech Eng 140:59–86.
    15. Brown, C. B. King, I. P. (1966). Automatic Embankment Analysis : Equilibrium and Instability Conditions , Geotechnique, Vol. 16, No. 3, pp.209-219.
    16. BUI H. H. (2011). Slope stability analysis and discontinuous slope failure simulation by elasto-plastic smoothed particle hydrodynamics (SPH). Geotechnique Volume 61 Issue 7, July 2011, pp. 565-574.
    17. Cai, K. & Ugai, K. (2003). Reinforcing mechanism of anchors in slopes: a numerical comparison of results of LEM and FEM. International Journal for Numerical and Analytical Methods in Geomechanics Volume 27, Issue 7
    18. Cárdenas IC. (2018). On the use of Bayesian networks as a meta-modelling approach to analyse uncertainties in slope stability analysis. Georisk: Assess Manag Risk Eng Syst Geohazards. doi.org/10.1080/ 17499518.2018.1498524.
    19. Chen JS & Wu CT & Yoon S & You Y. (2001). A stabilized conforming nodal integration for Galerkin meshfree methods. Int J Numer Methods Eng 50(2):435–466.
    20. Chen, X (2018). Slope stability analysis based on the Coupled Eulerian-Lagrangian finite element method.Bulletin of Engineering Geology and the Environment .https://doi.org/10.1007/s10064-018-1413-4.
    21. Cheng, Y.M. & Yip, C.J. (2007). Three-dimensional asymmetrical slope stability analysis extension of Bishop’s, Janbu’s, and Morgenstern–Price’s techniques. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 133(12), 1544-555.
    22. Chugh, K.A. (2003). On the boundary conditions in slope stability analysis. International Journal for Numerical and Analytical Methods in Geomechanics, 27(11): 905–926.
    23. Dawson, E. M.& Roth, W. H. & Drescher, A. (1999). Slope Stability Analysis by Strength Reduction, Geotechnique, Vol 49, No.6, pp.835-840.
    24. Duncan, J. M. (1996). State of the Art: Limit Equilibrium and Finite Element Analysis of Slopes, Journal of Geotechnical Engineering, ASCE, Vol. 122, No. 7, pp. 577-596.
    25. Griffiths, D. V. & Marquez, R. M. (2007). Three-dimensional slope stability analysis by elasto-plastic finite elements.Geotechnique 57, No. 6, 537–546
    26. Griffiths, D. V. & Lane, P. A. (1999). Slope Stability Analysis by Finite Elements, Geotechnique, London, U.K., Vol. 49, No. 3, pp. 387-403.
    27. I-Hsuan Ho. (2014). Parametric studies of slope stability analyses using three-dimensional finite element technique: geometric effect. Journal of GeoEngineering, Vol. 9, No.1, pp. 33-43 April.
    28. Kanungo, D.P. & Pain, A. & Sharma, S. (2013). Finite element modeling approach to assess the stability of debris and rock slope: a case study from the Indian Himalayas. Nat. Hazards 69, 1–24.70Y.
    29. Lam, L & Fredlund, D.G. (1993). A general limit equilibrium model for three-dimensional slope stability analysis. Canadian Geotechnical Journal, 30(6), 905-919.
    30. Matsui, T. & San, K. C. (1992). Finite Element Slope Stability Analysis by Shear Strength Reduction Technique, Soils and Foundations, Vol. 32, No. 1, pp. 59-70.
    31. Menetrey, P & Willam, KJ. (1995). Triaxial failure criterion for concrete and its generalization. Structural Journal, Volume 92 Issue 3, pp. 311-318.
    32. Mohammadi S & Taiebat HA (2013). A large deformation analysis for the assessment of failure induced deformations of slopes in strain softening materials. Comput Geotech 49:279–288.
    33. Mohammadi S & Taiebat HA (2014). H-adaptive updated lagrangian approach for large-deformation analysis of slope failure. Int J Geomech (ASCE) 15(6):1943–5622.
    34. Nian, T.K. (2012). Three-dimensional strength-reduction finite element analysis of slopes: geometric effects. Can. Geotech. J. 49: 574–588.
    35. Noh WF. (1964). CEL: a time-dependent, two space dimensional, coupled Eulerian–Lagrange code. Methods in Comput. Phys. 3, Fundamental Methods in Hydrodynamics. Academic Press, New York, pp 117–179.
    36. Qiu,G.(2011a). Application of a Coupled Eulerian–Lagrangian approach on geomechanical problems involving large deformations. Computers and Geotechnics Volume 38, Issue 1, January 2011, Pages 30-39.
    37. Qiu,G.(2011b). Controlled installation of spudcan foundations on loose sand overlying weak clay. Marine Structures Volume 24, Issue 4, October 2011, Pages 528-550.
    38. Stianson, J.R. & Fredlund, D.G. & Chan, D. (2011). Three-dimensional slope stability based on stresses from a stress-deformation analysis. Canadian Geotechnical Journal, 48.
    39. Sujan D. (2015). Finite element modeling of partially embedded pipelines in clay seabed using Coupled Eulerian–Lagrangian method. Canadian Geotechnical Journal, 2016, 52(1): 58-72.
    40. Terzaghi, K. & Peck, R. B. (1967). Soil mechanics in engineer practice (2nd ed.), John Wiley and Sons, Inc., New York, N. Y.
    41. Timothy D. Starkl & Hisham T. Eid (1998). Performance of three-dimensional slope stability methods in practice. Journal of Geotechnical and Geoenvironmental engineering.
    42. Tu, Y. (2016). New criteria for defining slope failure using the strength reduction method. Engineering Geology Volume 212, 30 September 2016, Pages 63-71.
    43. Ugai, K.& Leshchinsky, D. (1995). Three-Dimensional Limit Equilibrium and Finite Element Analysis: A Comparison of Results, Soils and Foundations, Vol. 35, No. 4, pp. 1-7.
    44. Ugai, K. (1989). A Method of Calculation of Total Factor of Safety of Slopes by Elaso-Plastic FEM, Soils and Foundations, Vol. 29, No. 2, pp. 190-195.
    45. Wang D & Randolph M.F & White D.J. (2013). A dynamic large deformation finite element method based on mesh regeneration. ComputGeotech 54:192–201.
    46. Wei,W.B. & Cheng,Y.M. (2009). Three-dimensional slope failure analysis by the strength reduction and limit equilibrium methods, Computers and Geotechnics 36 (2009) 70–80.
    47. Won,J. (2005).Coupled effects in stability analysis of pile–slope systems. Computers and Geotechnics Volume 32, Issue 4, June, 2005, Pages 304-315.
    48. Xiao T & Li D.Q. & Cao Z.J. & Tang XS (2016). Full probabilistic design of slopes in spatially variable soils using simplified reliability analysis method. Georisk: Assess Manag Risk Eng Syst Geohazards 11(1): 146–159.
    49. Xiao T & Li D.Q.& Cao Z.J & Zhang L.M. (2018). CPT-based probabilistic characterization of three-dimensional spatial variability using MLE. J Geotech Geoenviron 144(5):04018023.
    50. Zhang J & Wang H & Huang H.W. & Chen L.H. (2017). System reliability analysis of soil slopes stabilized with piles. Eng Geol 229(7):45–52.
    51. Zhang. Y & Chen, G.& Zheng, L.& Li, Y. & Zhuang, X. (2013). Effects of geometries on three-dimensional slope stability. Canadian Geotechnical Journal, 50, 233-249.
    52. ZhaoY. (2016). An efficient approach to incorporate anchor line effects into the coupled Eulerian–Lagrangian analysis of comprehensive anchor behaviors. Applied Ocean Research Volume 59, September 2016, Pages 201-215
    53. Zienkiewicz O.C. (1.975). Non-Associated Visco-Plasticity and Plasticity in Soil Mechanics, Geotechnique, London, U.K., VNo. 4, pp. 671-689.

    無法下載圖示 校內:立即公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE