研究生: |
劉燕蓉 Liou, Yan-Rung |
---|---|
論文名稱: |
波浪與複合式透水彈性潛堤互制分析 Analysis of Wave Interaction with a Composite Poro-Elastic Submerged Breakwater |
指導教授: |
許泰文
Hsu, Tai-Wen 藍元志 Lan, Yuan-Jyh |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 143 |
中文關鍵詞: | 複合式潛堤 、彈性材質 、透水結構物 、潛堤 |
外文關鍵詞: | Composite breakwaters, Elastic materials, Porous structures, Submerged breakwaters |
相關次數: | 點閱:95 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以理論解析探討波浪與前後相連複合式透水彈性潛堤互相作用之問題,本文延伸Lan and Lee(2010)提出之單一透水彈性潛堤進行理論解析。兩種複合潛堤之材料皆為均質且等向透水之彈性介質。本文在求解上,將問題的領域區分為五個部分,藉由交界面邊界條件的連續性,即潛堤前後材質的相連交界面、潛堤與流體交界面處之動力邊界條件壓力連續與質量通率連續,配合正交特性將波浪與複合式透水彈性潛堤互制問題聯立求解,據以求得波浪與複合式透水彈性潛堤之解。
在模式驗證上,本文將理論解析退化為單一材質之潛堤與Mei and Black(1969)之不透水剛性潛堤,李和劉(1995)與藍(2000)之透水剛性潛堤,以及Lan and Lee(2010)之透水彈性潛堤的理論解析結果比較,均得到良好的一致性。本文先藉由定性分析,觀察由柔性材質與剛硬性材質前後組成之複合式透水彈性結構物,受波浪作用後的運動特性。文中再選取兩種幾何形狀的複合式透水彈性潛堤,分別探討影響參數如前後堤寬改變、滲透係數變化及剪力模數對波浪的影響。
根據分析結果顯示,在潛堤堤寬較大(b/d≧2.0)的情況下,其材質為一硬一軟組合時,當材質較硬的部分其剪力模數在G≧5×10^5 N/m^2的範圍,G值變化對波浪反射率、透過率與能量損失的改變不大;而在潛堤堤寬較小(b/d≦0.3)的情況下,其材質剪力模數為G=1×10^4 N/m^2(柔性)與G=1×10^8 N/m^2(剛性)之組合時,結構物的彈性效應對波浪影響很小,但是當剪力模數組合變為G=1×10^4 N/m^2(柔性)與G=5×10^5 N/m^2(硬質柔性)時,在柔性材質寬度最大(硬質柔性材質寬度最小)的條件下,結構物的彈性效應影響波浪的情形仍相當明顯。
Wave propagation over a combined submerged poro-elastic structure with different materials is investigated theoretically. Lan and Lee’s (2010) theory was extended to derive a new analytical solution for describing the interaction between waves and a combined poro-elastic submerged structure. Lineary wave theory is used to analyze wave motion based an extending Biot’s theory including the turbulent frictional effect. In the present approach, the problem is divided into five domains in which matching boundary conditions as well as dynamic and kinematic conditions are employed in each connection region. Mass conservation of the poro-elastic structure and the equation of state for pore fluid are also used to arrive at the wave fields and displacement of the poro-elastic structure.
The present analytical solutions are identical to Lee and Liu (1995), Lan (2000), and Lan and Lee’s (2001) analytical results for the cases of a single breakwater with impermeable rigid, porous, and poro-elastic structures. Kinematic characteristics for the combined elastic and rigid porous structures on waves are studied. The effects of influence parameters for different geometries of poro-elastic structures with various width, intrinsic permeability and shear modulus.
From the present study the following major results can be addressed: (1) For a wider composite submerged poro-elastic structure with different shear modulus (b/d≧2.0), when the shear modulus of the harder material is in the region of G≧5×10^5 N/m^2, changes of shear modulus effect on wave reflection, transmission and energy dissipation are not remarkable. (2) For a narrower submerged poro-elastic structure with soft and rigid combination (b/d≦0.3), the effect of elasticity on waves is less obvious. However, different results are obtained for the composite breakwater with soft and quasirigid combination. In the case of larger width of soft material, the elastic deformation apparently affects the variation of wave field.
1.Augustin, L. N., Irish, J. L., and Lynett, P., “Laboratory and numerical studies of wave damping by emergent and near-emergent wetland vegetation,” Coastal Engineering, Vol. 56, pp. 332-340 (2009)
2.Biot, M.A., General theory of three-dimensional consolidation. Journal of Applied Physics, Vol. 12, pp. 155-164 (1941)
3.Dalrymple, R.A., Losada, M.A. and Martin, P.A.,”Reflection and transmission from porous structures under oblique wave attack,” Journal of Fluid Mechanics, Vol. 224, pp. 625-644 (1991)
4.Darcy, H., Les Fontaines Publiques de la Ville de Dijon, Dalmont, Paris (1856)
5.Gere, J. M., “Mechanics of Materials,” 6th Edition (2006)
6.Ghisalberti, M., Nepf, H.M., “Mixing layers and coherent structures in vegetated aquatic flows,” J.Geophys. Res.,Vol. 107(C2) (2002)
7.Ghisalberti, M., Nepf, H.M., “Shallow flows over a permeable medium: The hydrodynamics of submerged aquatic canopies,” Transport in Porous Media, Vol. 78, No. 3, pp. 385-402 (2009)
8.Ijima, T., Uwatoko, T. and Ushifusa, Y., “Experiments on the improvement of wave interception effect of sea-balloon breakwater,” Memoirs of the Faculty of Eng., Vol. 46, No. 2, Kyushu Univ, pp. 193–206 (1986)
9.Kreyszing, E., Advanced Enginerring Mathematics. John Wiley, New York (1983)
10.Lai, J. W., Lan, Y. J., Hsu, T. W. Ting C. H. and Chang, C. C., “Application of digital image process on observing the motions of wave and a series of poro-elastic submerged breakwaters,” Proceedings of Coastal Dynamics, pp. 1-13 (2009)
11.Lan, Y.J., Hsu, T.W., J. W., Chang, C. C. and Ting C. H., “Bragg scattering of waves propagating over a series of poro-elastic submerged breakwaters,” Jorunal of Wave Motion, Vol. 48, pp. 1-12 (2011)
12.Lan, Y.J., Hsu, T.W. and Chen, C.Y., “On Wave Propagating over Closely Adjacent Poro-Elastic Submerged Breakwaters,” Proceedings of the Institution of Mechanical Engineers Part M-Journal of Engineering for the Maritime Environment, (in press) (2012)
13.Lan, Y.J., and Lee, J.F., “On waves Propagating over a submerged poro-elastic structure,” Jorunal of Ocean Engineering, Vol. 37, pp. 705-717 (2010)
14.Lee, C.P., Wave interaction with permeable structures, Ph.D. Thesis, Oregon State University, Oregon, USA (1987)
15.Lee, J.F. and Lan, Y.J., “A second-order solution of waves passing porous structure,” Ocean Engineering, Vol. 23, No. 2, pp. 143-156 (1996)
16.Li C.W., Yan, K., “Numerical investigation of wave-current-vegetation interaction”, Journal of Hydraulic Engineering, Vol. 133, No. 7, pp. 794-803 (2007)
17.Losada, I.J., Silva, R. And Losada, M.A., “3-D non-breaking regular wave interaction with submerged breakwaters,” Coastal Engineering, Vol. 28, pp. 229-248 (1996a)
18.Losada, I.J., Silva, R. And Losada, M.A., “Interaction of non-breaking directional random waves with submerged breakwaters,” Coastal Engineering, Vol. 28, pp.249-266 (1996b)
19.Løvås, S.M., Tørum, A., “Effect of the kelp laminaria hyperborea upon sand dune erosion and water particle velocities,” Coastal Engineering, Vol. 44, pp. 37-63 (2001)
20.Madsen, O.S., “Wave transmission through porous structures.” Joural of Waterways, Harbours and Coastal Engineering Division, ASCE, Vol. 100 (WW3), pp. 169-188 (1974)
21.Madsen, O.S. and White, S.M., “Wave transmission through trapezoidal breakwaters,” Proc. 15th Coastal Engineering Conference, pp. 2662-2676 (1976)
22.Mei, C.C. and Black, J.L., “Scatting of surface waves by rectangular obstacles in waters of finite depth,” Journal of Fluid Mechanics, Vol.38, pp. 499-511 (1969)
23.Muskat, M., Physical priniciples of oil production, McGraw-Hill Book Co., Inc., New York, N. Y., pp. 128 (1949)
24.Ohyama, T., Tanaka, M., Kiyokawa, T., Uda, T., Murai, Y., , “Transmission and reflection characteristics of waves over a submerged flexible mound,” Coastal Engineering in Japan , Vol. 32, No. 1, pp. 53–68 (1989)
25.Putnam, J.A., “Loss of wave energy due to percolation in a permeable sea bottom,” Transaction of American Geophysical Union, Vol. 30, pp. 349-356 (1949)
26.Scarlatos, P.D. and Singh, V.P., “Long-wave transmission through porous breakwaters.” Coastal Engineering, Vol. 11, pp. 141-157 (1987)
27.Sollitt, C.K. and Cross, R.H., “Wave transmission through permeable breakwaters,” Proceeding 13th Costal Engineering Conference, ASCE, Vancouver, pp. 1827-1846 (1972)
28.Stratigaki, V., Manca, E., Prinos, P., Losada, I. J., Lara, J. L., Sclavo, M., Amos, C.L., Cáceres, I. and Sánchez-Arcilla, A., “Large-scale experiments on wave propagation over Posidonia oceanica,” Journal of Hydraulic Research, Vol. 49, pp. 31-43 (2011)
29.Sulisz, W., “Wave reflection and transmission at permeable breakwaters of arbitrary cross-section,” Coastal Engineering, Vol. 9, pp.371-386 (1985)
30.Sulisz, W., McDougal, W.G. and Sollott, C.K., “Wave interaction with rubble toe protection,” Ocean Engineering, Vol. 16, No. 5/6, pp. 463-473 (1989)
31.Verruijt, A., “Elastic storage of aquifers,” Flow through Porous Media, edited by De Wiest, R.J.M., Academic, New York, pp. 331-376 (1969)
32.Yamamoto, T., Koning, H.L., Sellmeiger, H. and Van Hijum, E.V., “On the Response of a Poro-elastic Bed to Water Waves,” Journal of Fluid Mechanics, Vol. 87, pp. 193-206 (1978)
33.李兆芳,藍元志 (1991),”具撓屈性直立圓柱對入射波影響之理論分析”,第十五屆全國力學會議,265頁-272頁。
34.李兆芳,劉正琪,”波浪通過透水潛堤之新理論解析”,第十七屆海洋工程研討會論文集,593頁-605頁,(1995)。
35.周宗仁,方惠民,”水面彈性膜消波特性之研究”,第十七屆海洋工程研討會論文集,443頁-458頁,(1995)。
36.葉旭璽,”連續彈性透水潛堤與波浪之互制分析”,國立成功大學水利及海洋工程研究所碩士論文,(2008)。
37.鄭詠翰,”應用PIV量測系統於單一彈性透水潛堤之流場特性研究”,國立成功大學水利及海洋工程研究所碩士論文,(2011)。
38.藍元志,李兆芳,”波浪通過透水彈性底床之互制作用”,第二十屆海洋工程研討會論文集,203頁-210頁,(1998)。
39.藍元志,李兆芳,”波浪與彈性透水潛堤之互制作用”,第二十一屆海洋工程研討會論文集,205頁-212頁,(1999)。
40.藍元志,”波浪與可透水彈性體互相作用之分析”,國立成功大學水利及海洋工程研究所博士論文,(2000)。