簡易檢索 / 詳目顯示

研究生: 黃冠益
Huang, Kuan-Yi
論文名稱: 壓電陶瓷晶片應用於量測液面晃盪對艙壁作用力之探討
Application of Piezo-Material on the Force Measurement of Bulkhead under Sloshing Condition
指導教授: 林忠宏
Lin, Chung-Hung
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 54
中文關鍵詞: 壓電陶瓷晶片簡諧運動液面晃盪
外文關鍵詞: Piezoelectric ceramics (PZT), sloshing, simple harmonic motion
相關次數: 點閱:99下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究目的為使用壓電陶瓷晶片量測液體晃盪對艙壁所產生之衝擊力量,壓電陶瓷晶片感測器適合用於動態壓力量測,欲使用壓電感測器量測之前,需先透過校正實驗找出壓電特性。此研究設計一套機構使水箱模擬船艙做簡諧運動搖擺,模擬不同晃盪週期搖晃情形,最後透過壓電感測器量測液面晃盪對艙壁所產生之力量分佈情形。針對PZT-855感測器,實驗得到當壓電效應所產生電壓與上升時間之夾角大於74度,作用力與電壓呈現高線性關係,當小於74度時,作用力與電壓會有高指數關係,結果顯示壓電陶瓷感測器,符合量測液面晃盪之衝擊力量。

    We would like to use the piezoelectric sensor that measures impact force on the bulkhead under sloshing situation.
    The sensor is suitable for measuring dynamic pressure, before using the piezoelectric sensor. We need to find out the sensor piezoelectric characteristics through the experiment. Hence, We Design a mechanism to make the tank rolling and simple harmonic motion. The sensor will measure the different impact force with the different rolling cycle.
    The result proves the piezoelectric sensor is suitable for impact force under sloshing.
    For PZT-855 piezo-sensor, the experiment comes up with the conclusion: when the included angle between the voltage resulting from direct piezoelectric effect and the time of rising is more the 74 degree, the force and voltage reveal high liner relation. When the angle is less than 74 degree, the force and voltage have high-index number relation. The result shows that piezo-sensor meet the impact force of sloshing.

    摘要....................................................I 英文摘要................................................II 致謝....................................................III 目錄....................................................IV 表目錄................................................. VI 圖目錄................................................. VII 符號表..................................................IX 第一章 緒論...........................................1 1.1 前言...........................................1 1.2 研究動機.......................................1 1.3 文獻回顧.......................................2 1.3.1 液艙四種晃蕩運動:.............................4 1.3.2 液貨艙中液面晃盪產生的壓力情形.................5 1.4 本文架構.......................................6 第二章 壓電理論基礎...................................7 2.1 壓電材料介紹...................................7 2.2 壓電材料參數介紹...............................9 2.3 壓電方程式.....................................10 第三章 實驗儀器與設備.................................12 3.1 壓電感測器選用與製作...........................12 3.2 往復機構實驗設備與軟體.........................14 3.2.1 往復機構設備...................................14 3.2.2 類比數位訊號轉換...............................16 3.2.3 荷重感測器(Load-Cell)..........................17 3.2.4 高速攝影機(High speed camera)..................18 3.3 液面晃盪實驗設備與軟體.........................19 3.3.1 液面晃盪簡諧運動機構模擬設計...................19 3.3.2 嵌入式系統(embbade system)和編碼器(Encoder)....20 3.3.3 Matlab軟體.....................................20 第四章 壓電感測器實驗校正.............................22 4.1 往復直線運動機構校正實驗設計...................22 4.2 個別壓電感測器基準值校正.......................23 4.3 壓電感測器受力與電壓關係探討...................30 4.4 壓電感測器電壓與上升時間之關係探討.............24 第五章 自由液面晃盪實驗...............................34 5.1 模擬水箱受不同風力等級之六度運動...............34 5.2 自由液面晃盪實驗...............................38 5.3 水量填充之高度影響.............................39 5.4 晃盪週期計算...................................40 5.5 實驗針對不同晃盪週期做探討.....................41 5.6 液面晃盪對壁面之作用力量分佈圖.................48 5.7 液體固有週期與晃盪週期接近之共振實驗...........49 第六章 結論與未來研究方向.............................50

    [1] Lloyd’s Register of Shipping. Sloshing Loads and Scantling Assessment. 2002
    [2]Se Hyuk Lee, Jeong Yull Kim et al. Simulation of 3-D sloshing and structural response in ship’s tanks taking account of fluid-structure interaction[J]. SNAME Transaction, 1995, 103:321-342
    [3]Gautschi, G. (2001), Piezoelectric Sensors: force, strain, pressure, acceleration and acoustic emission sensors, materials and amplifiers, New York: Springer.
    [4]Bass, R., Bowles, E., Trudell, R., Navickas, J., Peck, J., Endo, N., Pots, B., 1985. Modeling criteria for scaled LNG sloshing experiments. Transactions of the ASME 107, 272–280.
    [5]Berg, A., 1987. Scaling laws and statistical distributions of impact pressures in liquid sloshing. Technical Report no. 87-2008, Det Norske Veritas (DNV). Cleary, P.W., 1998. Modelling confined multi-material heat and mass flows using sph. Applied Mathematical Modelling 22 (12), 981–993.
    [6]朱仁慶,液體晃蕩及其與結構的相互作用,中國船舶科學研究中心,博士學位論文,2001。
    [7]王德禹、金鹹定,三自由度晃蕩類比裝置及其模態分析海洋工程,2000,18(4):94-96。
    [8]周卓明(2003),壓電力學,臺北:全華。
    [9]黃清弘,PVDF 壓電陣列感測器之製作、校正及應用,國立成功大學機械工程學系碩士論文,2005。
    [10]羅志宏,船隻在順波中航向穩定性與運動之分析,國立成功大學造船暨船舶機械工程研究所碩士論文, 2001。
    [11]田朝元,以PC為基礎之頸椎牽引機力量感測器設計與製作,逢甲大學電機工程研究所,2007。
    [12]林江諭,微壓電感測器系統於咬合力量測之探討,國立成功大學醫學工程研究所,2006。
    [13]蔡建維,壓電變壓器之製造與分析及性能研究,國立成功大學航空太空工程學系,2006。

    下載圖示 校內:立即公開
    校外:2009-07-08公開
    QR CODE