| 研究生: |
張靜宜 chang, ching-i |
|---|---|
| 論文名稱: |
側向磊晶技術成長氮化鎵之研究 The Investigation on GaN Growth by Epitaxial Lateral Overgrowth |
| 指導教授: |
劉全璞
Liu, Chuan-Pu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 169 |
| 中文關鍵詞: | 氮化鎵 、側向磊晶 |
| 外文關鍵詞: | ELO, ELOG, GaN |
| 相關次數: | 點閱:31 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究是使用磊晶側向成長法(Epitaxial Lateral Overgrowth, ELOG)的技術,利用有機化學氣相沈積法(metal organic chemical vapor deposition, MOCVD )來成長氮化鎵的膜,研究不同的mask fill factor對氮化鎵特性的影響及穿遂差排的影響,從SEM照片發現在同樣的成長條件下,當mask fill factor等於1的時候氮化鎵幾乎已經成為膜,但是當mask fill factor等於5時卻還是獨立的錐狀體,在X-ray的rocking curve中發現不同的mask fill factor在c軸方向的偏斜程度也不一樣,在光學分析的結果是比較一致的,主要發光波長都為3.4eV在Yellow Luminescence的中心位於2.3eV。在穿透式電子顯微鏡(TEM)的分析中,有明顯的看見差排彎曲的現象,這也達到這個製程的目的。
The optical performance of a GaN blue-light emitting diode is greatly influenced by the density and distribution of threading dislocations, which in turn strongly depend on the ratio of mask to window width during Epitaxial Lateral Overgrowth (ELOG). Thus we study the dependence of microstructure and optical property evolution on the spatial distribution of the defects in the ELOG GaN films by varying mask to window width ratio. The window width is maintained at 5μm and the ratio is varied from one to five. We employ a two-step ELOG method to fabrication GaN by Metalorganic chemical vapor deposition (MOCVD), where SiO2 as the mask was grown on low-temperature GaN as the buffer and seed layer. The patterns were square dot array and developed by conventional photolithography method, where the ELOG GaN stripes on SiO2 were arranged along the directions of the underlying GaN. X-ray rocking curves show that all the resulting films are of excellent epitaxial quality with non-uniform strain distribution, which was a function of the mask ratio and determines the spatial distribution of threading dislocations. The detailed GaN island evolution was also revealed by scanning electron microscopy. Photoluminescence and cathodoluminescence examine the origins of UV and yellow emissions, which can be explained by defect generation as examined by transmission electron microscopy. The mechanism for impeding threading dislocations is discussed.
[1] S. Nakamura et al., Appl. Phys. Lett. 72, P.211 (1998).
[2] S. Strite and H. Morkoc, J. Vac. Sci. Technol. B10, P.1237 (1992).
[3] Shuji Nakamura, Jpn. J. Appl. Phys. 30, P.1620 (1991).
[4] J.L. Rouviere, M. Arlery, B. Daudin, G. Feuillet, O. Briot, Mater. Sci. and Eng. B50, P.61 (1997)
[5] Shuji Nakamura, Masayuki Senoh, Shin-ichi Nagahama, Naruhito Iwasa, Takao Yamada, Toshio Matsushita, Yasunobu Sugimoto, and Hiroyuki Kiyoku, Appl. Phys. Lett. 70, P.868 (1997)
[6] Izabella Crzeogry, J. Phys: Condens. Matter 13 P.6875 (2001)
[7] Chiao-Yi Hwang, Ph.D.Mechenics and Materials Science, Rutgers University, Piscataway, NJ (1995).
[8]史光國, “GaN 藍色發光及雷射二極體之發展現況”, 工業材料126, 154 頁, 民國86 年6 月.
[9]廖偉材, “氮化鋁鎵/氮化鎵超晶格原子層磊晶之研究”, 逢甲大學
材料科學研究所碩士論文, 2002.
[10] E. Kurtz et al., J. Cryst. Growth 214/215, P.712 (2000).
[11] J.A. Freitas Jr. et al., J. Cryst. Growth 231, P.322 (2001).
[12] L. Liu, J.H. Edgar, Materials Science and Engineering R 37, P.61 (2002)
[13]史光國編著,現代半導體發光及雷射二極體材料技術,全華出版,2.1節
[14] Kazumasa Hiramatsu Journal of Physics Condensed Matter 13 P.6961 (2001)
[15] S. Tomiya, K. Funato, and T. Asatsuma. Applied Physics Letters 77, P.636 (2000)
[16] P. Fini, H. Marchand, J.P. Ibbetson, Journal of Crystal Growth 209, P.581 (2000)
[17] Kazumasa Hiramatsu, Katsuya Nishiyama, Masaru Onishi, Journal of Crystal Growth 221, P.316 (2000)
[18] T. Paskova, E. valcheva, P.P. Paskov. Diamond and Related Materials 13, P.1125 (2004)
[19] U. Kaufmann, M. Kunzer, H. Obloh, Physical Review B 59, P.5561 (1999)
[20] Jorg Neugebauer, Chris G. Van de Walle. Applied Physical Letter 69, P.503 (1996)
[21] Masahiro Yoshimoto, Junji Saraie, Shuji Nakamura. Jpn. J Appl. Phys. 40, P.L386 (2001)
[22] X. Li, P. W. Bohn. Applied Physics Letters 75, P.4049 (1999)
[23] Junyong Hang, Yaowen Shen, Zhanguo Wang, Materials Science and Engineering B91-92, P.303 (2002)
[24] H. C. Yang, T. Y. Lin, amd Y. F. Chen, Physical Review B 62, P.12593 (2000)
[25] P.Gibart, B. Beaumont, Chua Soo-Jin, Journal of crystal Growth 201/202, P.365 (1999)
[26] Yong-Hoon Cho, H. M. Kim, T. W. Kang, 80 P.1141 (2002)
[27] K. Hiramatsu1, K. Nishiyama, A. Motogaito, Phys. Stat. 176, P.535 (1999)
[28] Kazumasa Hiramatsu, Katsuya Nishiyama, Masaru Onishi, Journal of Crystal Growth 221, P.316 (2000)
[29] V. Wanger, O.Parillaud, h. J. Buhlmann, Journal of Applied Physics 92, P.1307 (2002)
[30] W. M. Chen, P. J. Mcnally, J. Kanktharana, Journal of Materials Science: Materials in Electronic 14, P.283 (2003)
[31] Pierre Gibart, Reports om Progess in Physics 67, P.667 (2004)
[32] Hai-Ping Liu, Jenq-Dar Tsay, Wen-Yueh Liu, Journal of Crystal Growth 260, P.79 (2004)
[33] Hai-Ping Liu, In-Gann Chen, Jenq-Dar Tsay, Journal of Electroceramics, 13 P.839 (2004)
[34] V. Wagner, O. Parillaud, H. J. Buhlmann, M. Ilegems, S. Gradecak, P. Stadelmann, T. Riemann and J. Christen, J. Appl. Phys. 92, P.1307 (2002).
[35] K.J. Linthicum, T. Gehrke, D.B. Thomson, K.M.Tracy, MRS Internet J. Nitride Semicond. Res. 4S1, G4.9 (1999)
[36] Hiroki Sone, Shingo Nambu, Yasutoshi Kawaguchi, Jpn. J.Appl.Phys. 38 P.L356 (1999)
[37] Theeradetch Detchprohm, Masahiro Yano, Shigekazu Sano, Jpn. J.Appl.Phys. 40 P.L16 (2001)
[38] Isao Kidoguchi, Akihiko Ishibashi, Gaku Sughara Jpn. J.Appl.Phys. 39 P.L453 (2000)
[39]http://www.asu.edu/clas/csss/chrem/facilities/jsm6300.html
[40] H.Amano et al. Thin Solid Films 163, P.415 (1988)
[41] K. Hiromatsu et al. J. Crystal Growth 115, P.628 (1991)
[42] H.Amano et al. Appl. Phys. Lettl 48, P.353 (1986)
[43] I. Akasaki et al. J. Crystal Growth 98, P.209 (1989)
[44] S. Nakamura et al. Jap. J. Appl. Phys. 30, P.L1705 (1991)
[45] M.S. Yi et al. Appl. Phys. Lett. 75, P.2187 (1999)
[46] J.N. Kuznia et al. Appl. Phys. 73, P4700 (1993)
[47] K. Uchida et al. J. Crystal Growth 189/190, P270 (1998)