| 研究生: |
張宏銘 Chang, Hong-Ming |
|---|---|
| 論文名稱: |
氧化鋅光電導檢測器及氧化鋅與氮化鎵異質接面發光二極體 ZnO Photoconductive Sensors and ZnO/GaN Heterojunction light-emitting-diodes |
| 指導教授: |
張守進
Chang, Shoou-Jinn |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 發光二極體 、檢測器 、氧化鋅 |
| 外文關鍵詞: | Heterojunction, ZnO, photoconductive sensor |
| 相關次數: | 點閱:63 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,研究釕(Ru)接觸電極在n型氧化鋅上的電特性及光學特性。實驗中,我們使用射頻濺鍍的方式在n型氧化鋅上鍍上一層厚度100 nm的釕(Ru)金屬。我們可以發現,經由高溫氧回火,將會形成一層高透明度的氧化釕(RuOx)。在波長460 nm時,剛沉積完成的釕(Ru)金屬其穿透率為56.8%, 然而經由高溫氧回火500 ℃、600 ℃、700 ℃後,穿透率可分別提高至73.5 %、79.6 %及86.8 %。此外,我們還可以發現剛沉積完成的釕(Ru)金屬在n型氧化鋅上呈現蕭基接觸的現象。然而,經由高溫氧回火後,釕(Ru)金屬將會和其底下氧化鋅形成良好的歐姆接觸。在回火溫度650 ℃時,其特徵接觸電阻只有2.72x10e-4 Ω-cm2。而如此低的特徵接觸電阻可歸因於高溫氧回火形成了氧化釕(RuOx)以及氧化鋅表面氧原子的解離所造成。
除此之外,氧化鋅光電導檢測器也被製作及分析。我們在藍寶石基板上以鎳/金當做接觸電極製作了氧化鋅光電導檢測器。我們發現,此檢測器存在一個和電場相依的光電導增益。而在入射光波長365 nm,外加電場500 V/cm時,可以發現最大的響應及量子效率分別達54 mA/W及2.8 %,而此時暫態響應的衰減時間常數為0.556 ms。在偏壓5伏特時,此檢測器的雜訊等效功率(NEP)及正規化檢測度(D*)分別達1.83×10e-6 W及6.91x10e5 cmHz0.5W-1。
另一方面,我們也研製了氧化鋅與氮化鎵異質接面發光二極體。我們在藍寶石基板上成長及製作n型氧化鋅與p型氮化鎵異質接面發光二極體,並研究分析其電致發光(EL)特性。在正偏壓下,可以發現其呈現類似二極體的I-V特性曲線。從室溫下的電致發光(EL)頻譜圖,可以發現其發光呈現寬頻帶的黃綠光。另一方面,我們也分別量測了n型氧化鋅及p型氮化鎵的拉曼及光激發光(PL)頻譜圖。比較電致發光(EL)及光激發光(PL)頻譜圖,我們可以發現,光的產生確實是由存在於氮化鎵中深層的缺陷所致。
In this thesis, electrical and optical properties of Ru contact on n-type ZnO epitaxial layers were investigated. 100-nm-thick Ru films were deposited onto n-ZnO epitaxial layers by rf sputtering. It was found hat highly transparent RuOx was form after O2 annealing. With an incident wavelength of 460 nm, it was found that transmittances of as-grown, 500 oC-annealed, 600 oC-annealed and 700 oC-annealed Ru films were 56.8 %, 73.5 %, 79.6 % and 86.8 %, respectively. In addition, it was also found that as-deposited Ru formed Schottky contact on n-ZnO. However, good ohmic contacts were formed between the annealed Ru films and the underneath ZnO. With 650oC-annealing, we achieved a specific contact resistance of only 2.72x10e-4 Ω-cm2. Such a low specific contact resistance should be attributed to the formation of RuOx and the dissociation of oxygen atoms in ZnO during annealing.
Moreover, ZnO photoconductive sensor was also fabricated and characterized. We report the fabrication of ZnO photoconductive sensors epitaxially grown on sapphire substrates with interdigitated Ni/Au electrodes. It was found that there exists an electric field dependent photoconductive gain in the fabricated sensors. With an incident light wavelength of 365 nm and an applied electric field of 500 V/cm, it was found that maximum responsivity and quantum efficiency were respectively around 54 mA/W and 2.8 % while time constant of the decay transient was τ~0.556 ms. In addition, with a 5 V applied bias, it was found that NEP and normalized detectivity of the fabricated sensors were 1.83×10e-6 W and 6.91x10e5 cmHz0.5W-1, respectively.
In addition, ZnO/GaN heterojunction light emitting diode was also fabricated and characterized. We have detailed the growth, processing, and fabrication of an n-ZnO/p-GaN heterojunction light emitting diode on a c-Al2O3 substrate, and characterized the electroluminescence from this device. Diode-like I–V characteristics and RT electroluminescent (EL) spectrum with intense broadband-emission in the yellow-green region has been observed under forward bias. Photoluminescent (PL) and Raman spectra of the p-ZnO and n-GaN films were also measured. By comparing PL and EL spectra, it is concluded that the deep-level defect-emission emerged mainly from the GaN epitaxial layer.
Chapter 1
[1] B. M. Ataev, Y. I. Alivov, V. A. Nikitenko, M. V. Chukichev, V. V. Mamedov, S. S. Makhmudov, J. Optoelectronics and Advanced Materials, Vol. 5, p. 899, 2003.
[2] Clement Yuen, S. F. Yu, Eunice S. P. Leong, H. Y. Yang, S. P. Lau, N. S. Chen, and H. H. Hng, Appl. Phys. Lett., Vol. 86, pp. 031112, 2005.
[3] M. J. Liu and H. K. Kim, Appl. Phys. Lett., Vol. 84, pp. 173, 2004.
[4] A. Bouhdada, M. Hanzaz, F. Viguê, J. P. Faurie, Appl. Phys. Lett., Vol. 83, pp. 171, 2003.
[5] M. L. Lee, J. K. Sheu, Y. K. Su, S. J. Chang, W. C. Lai and G. C. Chi, IEEE Electron Device Lett., Vol. 25, pp. 593-595, 2004.
[6] J. H. Edgar, Properties of Group III Nitrides, 1994 (London: INSPEC)
[7] M. Razeghi and A. Rogalski, J. Appl. Phys., Vol. 79, pp. 7433, 1996.
[8] M. N. Yoder, IEEE Trans. Electron Devices, Vol. 43, pp. 1633, 1996.
[9] S. J. Pearton, J. C. Zolper, R. J. Shul and F. Ren, J. Appl. Phys., Vol 86, pp. 1, 1999.
[10] Q. Chen, J. W. Yang, A. Osinsky, S. Gangopadhyay, B. Lim, M. Z. Anwar, and M. A. Khan, Appl. Phys. Lett., Vol. 70, pp. 2277, 1997.
[11] “APA optics offers gallium nitride UV detectors,” Compound Semiconductor, Vol. 4, pp. 10, 1998.
[12] J. D. Brown, J. Boney, J. Matthews, P. Srinivasan, J. F. Schetzina, T. Nohava, W. Yang, and S. Krishnankutty, MRS Internet J. Nitride Semicond. Res., Vol. 5, pp. 1, 2000.
[13] T. M. Barnes, J. Leaf, S. Hand, C. Fry and C. A. Wolden, J, Appl. Phys., Vol. 96, pp.7036, 2004.
[14] H. Kato, M. Sano, K. Miyanoto and T. Yao, Jpn. J. Appl. Phys., Vol. 42, pp. 1002, 2003.
[15] Y. I. Alivov, E. V. Kalinina, A. E. Cherenkov, D. C. Look, B. M. Ataev, A. K. Omaev, M. V. Chukichev and D. M. Bagnall, Appl. Phys. Lett., Vol. 83, pp. 4719, 2003.
[16] N. R. Aghamalyan, R. K. Hovsepyan, A. R. Poghosyan and V. G. Lazaryan, Proc. SPIE Int. Soc. Opt. Eng. Vol. 5560, pp. 235, 2004.
[17] S. Liang, H. Sheng, Y. Liu, Z. Huo, Y. Lu and H. Shen, J. Crystal Growth, Vol. 225, pp. 110, 2001.
[18] A. Mang, K. Reimann and St. Rübenacke, Solid State Communications, Vol. 94, pp. 251, 1995.
[19] A. Setiawan, Z. Vashaei, M. W. Cho, T. Yao, H. Kato, M. Sano, K. Miyamoto, I. Yonenaga and H. J. Ko, J. Appl. Phys., Vol. 96, pp. 3763, 2004.
[20] E. M. Kaidashev, M. Lorenz, H. von Wenckstern, A. Rahm, H. C. Semmelhack, K. H. Han, G. Benndorf, C. Bundesmann, H. Hochmuth and M. Grundmann, Appl. Physi. Lett., Vol. 82, pp. 3901, 2003.
[21] K. Sakurai, D. Iwata, S. Fujita and S. Fujita, Jpn. J. Appl. Phys., Vol. 38, pp. 2606, 1999.
[22] H. J. Ko, Y. Chen, S. K. Hong and T. Yao, J. Crystal Growth, Vol. 209, pp. 816, 2000.
[23] H. K. Kim, S. H. Han, T. Y. Seong, and W. K. Choi, J. Electrochem. Soc., Vol. 148, pp. 114, 2001.
[24] H. K. Kim, K. K. Kim, S. J. Park, T. Y. Seong, and I. Adesida, J. Appl. Phys., Vol. 94, pp. 4225, 2003.
[25] T. Akane, K. Sugioka, and K. Midorikawa, J. Vac. Sci. Technol. B, Vol. 18, pp. 1406, 2000.
[26] J. K. Kim and J. L. Lee, J. Electrochem. Soc., Vol. 151, pp. 190, 2004.
[27] D. C. Look, Mater. Sci. Eng. B, Vol. 80, pp. 383, 2001.
[28] J. W. Dong, A. Osinsky, B. Hertog, A. M. Dabiran, P. P. Chow Y. W. Heo, D. P. Norton, and S. J. Pearton, J. Electron. Mater., Vol. 34, pp. 416, 2005.
[29] J. Bian, W. Liu, H. Liang, L. Hu, J. Sun, Y. Luo, G. Du, Chem. Phys. Lett., Vol. 430, pp. 183, 2006.
[30] A. Tsukazaki, M. Kubota, A. Ohtomo, T. Onuma, K. Ohtani, H. Ohno, S.F. Chichibu, and M. Kawasak, Jpn. J. Appl. Phys., Vol. 44, pp. 643, 2005.
[31] A. Tsukazaki, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S.F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, M. Kawasaki, Nat. Mater., Vol. 4, pp. 42, 2005.
[32] K. Ip, Y.W. Heo, D.P. Norton, S.J. Pearton, J.R. LaRoche, F. Ren, Appl. Phys. Lett., Vol. 85, pp. 1169, 2004.
[33] Y. Chen, D. M. Bagnal, H.-J. Koh, K.-T. Park, K. Hiraga, Z. Zhu, and T. Yao, J. Appl. Phys., Vol. 84, pp. 3912, 1998.
Chapter 2
[1] J. L. Vossen and W. Kern, “Thin Flim Processes”, Academic Press, New York, pp. 131, 1978.
[2] C. Y. Chang and S.M. Sze, “ULSI Technology”, McGraw-Hill, New York, pp. 380, 1996.
[3] S. I. Shah, “Handbook of Thin Film Process Technology”, Institute of Physics Pub, Bristol, UK, pp. A3.0:1, 1995.
[4] S. M. Sze, “VLSI Technology”, McGraw-Hill, New York, pp. 387, 1978.
[5] 汪健民, “Materials Analysis”, 中國材料科學協會, 1998
[6] A. M. Goodman, J. Appl. Phys, Vol. 34, pp. 329, 1963.
[7] R. H. Fowler, Phys. Rev, Vol. 38, pp. 45, 1931.
[8] A. Y. Cho and J. R. Arthur, prog. Solid State Chem., Vol. 10, pp. 157, 1975
[9] P. Bhattacharya, Semiconductor Optoelectronic Devices, 1994 (Englewood Cliffs, NJ: Prentice Hall)
[10] A. Rogalski, SPIE Optical Engineering Press, 1995 Infrared Photon Detectors (Washington, 1995).
[11] S. M. Sze, Physics of Semiconductor Devices, 1981 (New York: Wiley)
Chapter 3
[1] Y. R. Ryu, T. S. Lee, J. A. Lubguban, H. W. White, Y. S. Park, and C. J. Youn, Appl. Phys. Lett., Vol. 83, pp. 153504, 2005.
[2] N. R. Aghamalyan, R. K. Hovsepyan, A. R. Poghosyan, and V. G. Lazaryan, Proc. SPIE, Vol. 5560, pp. 235, 2004.
[3] D. K. Hwang, S. H. Kang, J. H. Lim, E. J. Yang, J. Y. Oh, J. H. Yang, and S. J. Park, Appl. Phys. Lett., Vol. 86, pp. 222101, 2005.
[4] A. Mang, K. Reimann, and S. Rübenacke, Solid State Commun., Vol. 94, pp. 251, 1995.
[5] T. M. Barnes, J. Leaf, S. Hand, C. Fry, and C. A. Wolden, J. Appl. Phys., Vol. 96, pp. 12, 2004.
[6] H. Kato, M. Sano, K. Miyanoto, and T. Yao, Jpn. J. Appl. Phys., Part 2, Vol. 42, pp. 1002, 2003.
[7] F. D. Auret, S. A. Goodman, M. Hayes, M. J. Legodi, H. A. van Laarhoven and D. C. Look, Appl. Phys. Lett., Vol. 79, pp. 3074, 2001.
[8] J. K. Kim and J. L. Lee, J. Electrochem. Soc., Vol. 151, pp. 190, 2004.
[9] H. W. Jang and J. L. Lee, J. Appl. Phys., Vol. 93, pp. 5416, 2003.
[10] R. E. Hummel, Electronic Properties of Materials, Springer, Berlin, pp. 373, 1992.
[11] H. Norde, J. Appl. Phys., Vol. 50, pp. 5052, 1979.
[12] K. E. Bohlin, J. Appl. Phys., Vol. 60, pp. 1223, 1986.
[13] T. M. Barnes, J. Leaf, S. Hand, C. Fry and C. A. Wolden, J. Appl. Phys., Vol. 96, pp. 12, 2004.
[14] H. Kato, M. Sano, K. Miyanoto and T. Yao, Jpn. J. Appl. Phys. Lett., Vol. 42, pp. 1002, 2003.
[15] H. K. Kim, S. H. Han, T. Y. Seong and W. K. Choi, J. Electrochem. Soc., Vol. 148, pp. 114, 2001.
[16] H. K. Kim, K. K. Kim, S. J. Park, T. Y. Seong and I. Adesida, J. Appl. Phys., Vol. 94, pp. 4225, 2003.
[17] T. Akane, K. Sugioka and K. Midorikawa, J. Vac. Sci. & Technol. B, Vol. 18, pp. 1406, 2000.
[18] J. K. Kim and J. L. Lee, J. Electrochem. Soc., Vol. 151, pp. 190, 2004.
[19] K. Ip, Y. W. Heo, K. H. Baik, D. P. Norton and S. J. Pearton, Appl. Phys. Lett., Vol. 84, pp. 544, 2004.
Chapter 4
[1] S. J. Chang, C. L. Yu, R. W. Chuang, P. C. Chang, Y. C. Lin, Y. W. Jhan and C. H. Chen, IEEE Sensors Journal, Vol. 6, pp. 1043, 2006.
[2] N. Vanhove, J. John, A. Lorenz, K. Cheng, G. Borghs, J. E. M. Haverkort, Appl. Surf. Sci., Vol. 253, pp. 2930, 2006.
[3] J. Ohsawa, T. Kozawa, O. Ishiguro and H. Itho, Jpn. J. Appl. Phys., Vol. 45, pp. 435, 2006.
[4] T. K. Ko, S. J. Chang, Y. K. Su, Y. Z. Chiou, C. S. Chang, S. C. Shei, J. K. Sheu, W. C. Lai, Y. C. Lin, W. S. Chen and C. F. Shen, IEEE Tran. Adv. Packaging, Vol, 29, pp. 483, 2006.
[5] T. K. Ko, S. J. Chang, J. K. Sheu, S. C. Shei, Y. Z. Chiou, M. L. Lee, C. F. Shen, S. P. Chang and K. W. Lin, Semicond. Sci. Technol., Vol. 21, pp. 1064, 2006.
[6] J. D. Hwang and C. C. Lin, Thin Solid Films, Vol. 491, pp. 276, 2005.
[7] T. K. Lin, S. J. Chang, Y. Z. Chiou, C. K. Wang, S. P. Chang, K. T. Lam, Y. S. Sun and B. R. Huang, Solid-State Electron., Vol. 50, pp. 750, 2006.
[8] S. J. Chang, T. K. Lin, Y. K. Su, Y. Z. Chiou, C. K. Wang, S. P. Chang, C. M. Chang, J. J. Tang and B. R. Huang, IEEE Sensor Journa, Vol. 6, pp. 945 , 2006.
[9] T. K. Lin, S. J. Chang, Y. K. Su, Y. Z. Chiou, C. K. Wang, C. M. Chang and B. R. Huang, IEEE Tran. Electron. Dev., Vol. 52, pp. 121, 2005.
[10] T. K. Lin, S. J. Chang, Y. K. Su, Y. Z. Chiou, C. K. Wang, S. P. Chang, C. M. Chang, J. J. Tang and B. R. Huang, Mater. Sci. Eng. B Vol. 119, pp. 202 ,2005.
[11] S. J. Chang, T. K. Lin, Y. K. Su, Y. Z. Chiou, C. K. Wang, S. P. Chang, C. M. Chang, J. J. Tang and B. R. Huang, Mater. Sci. Eng. B, Vol. 127, pp. 164, 2006.
[12] T. M. Barnes, J. Leaf, S. Hand, C. Fry and C. A. Wolden, J, Appl. Phys., Vol. 96, pp. 7036, 2004.
[13] H. Kato, M. Sano, K. Miyanoto and T. Yao, Jpn. J. Appl. Phys., Vol. 42, pp. 1002, 2003.
[14] D. C. Look, Mater. Sci. Eng. B, Vol. 80, pp. 383, 2001.
[15] Y. I. Alivov, E. V. Kalinina, A. E. Cherenkov, D. C. Look, B. M. Ataev, A. K. Omaev, M. V. Chukichev and D. M. Bagnall, Appl. Phys. Lett., Vol. 83, pp. 4719, 2003.
[16] N. R. Aghamalyan, R. K. Hovsepyan, A. R. Poghosyan and V. G. Lazaryan, Proc. SPIE Int. Soc. Opt. Eng., Vol. 5560, pp. 235, 2004.
[17] S. Liang, H. Sheng, Y. Liu, Z. Huo, Y. Lu and H. Shen, J. Crystal Growth, Vol. 225, pp. 110, 2001.
[18] A. Mang, K. Reimann and S. Rubenacke, Solid State Comm., Vol. 94, pp. 251, 1995.
[19] H. Ohta, M. Kamiya, T. Kamiya, M. Hirano and H. Hosono, Thin Solid Films, Vol. 445, pp. 317, 2003.
[20] D. Basak, G. Amin, B. Mallik, G. K. Paul and S. K. Sen, J. Crystal Growth, Vol. 256, pp. 73, 2003.
[21] C. L. Hsu, S. J. Chang, Y. R. Lin, P. C. Li, T. S. Lin, S. Y. Tsai, T. H. Lu, I. C. Chen, Chem. Phys. Lett., Vol. 416, pp. 75, 2005.
[22] M. Liu and H. K. Kim, Appl. Phys. Lett., Vol. 84, pp. 173, 2004.
[23] Y. Chen, H. J. Ko, S. K. Hong and T. Yao, Appl. Phys. Lett., Vol. 76, pp. 559, 2000.
[24] F. Vigue, P. de Mierry, J. P. Faurie, E. Monroy, F. Calle, and E. Munoz, Electron. Lett., Vol. 36, pp. 826, 2000.
[25] Hyuck Soo Yang, D. P. Norton, S. J. Pearton and F. Ren, Appl. Phys. Lett., Vol. 87, pp. 212106, 2005.
[26] S. M. Sze, Semiconductor Devices Physics and Technology, 1936.
[27] S. Salvatori, M. C. Rossi, F. Galluzzi, E. Pace, P. Ascarelli and M.Marinelli, Diamond and Related Mater., Vol. 7, pp. 811, 1998.
[28] S. J. Baik, J. H. Jang, C. H. Lee, W. Y. Cho and K. S. Lim, Appl. Phys. Lett., Vol. 70, pp. 3516, 1997.
[29] Q. H. Li, Q. Wan, Y. X. Liang and T. H. Wang, Appl. Phys. Lett., Vol. 84, pp. 4556, 2004.
[30] J. T. Xu, D. You, Y. W. Tang, Y. Kang, X. Li, X. Y. Li and H. M. Gong, Appl. Phys. Lett., Vol. 88, pp. 072106, 2006.
[31] M. Salis, A. Anedda, F. Quarati, A. J. Blue and W. J. Cunningham, J. Appl. Phys., Vol. 97, pp. 033709, 2005.
[32] B. Poti, A. Passaseo, M. Lomascolo, R. Cingolani and M. De Vittorio, Appl. Phys. Lett., Vol. 85, pp. 6083, 2004.
[33] T. K. Lin, S. J. Chang, Y. K. Su, B. R. Huang, M. Fujita and Y. Horikoshi, J. Crystal Growth, Vol. 281, pp. 513, 2005.
[34] D. Basak, G. Amin, B. Mallik, G. K. Paul and S. K. Sen, J. Crystal Growth, Vol. 256, pp. 73, 2003.
[35] P. Sharma, K. Sreenivas and K. V. Rao, J. Appl. Phys., Vol. 93, pp. 3963, 2003.
[36] T. K. Lin, S. J. Chang, B. R. Huang, K. T. Lam, Y. S. Sun, M. Fujita, and Y. Horikoshi, J, Electrochem. Soc., Vol. 153, pp. 677, 2006.
[37] S. J. Young, L. W. Ji., S. J. Chang, S. H. Liang, K. T. Lam, T. H. Fang, X. L. Du and Q. K. Xue, to appear in Sensors and Actuators A, 2006.
[38] T. G. M. Kleinpenning, Solid-State Electron., Vol. 22, pp. 121, 1979.
[39] F. N. Hooge, Physica, Vol. 60, pp. 130, 1972.
[40] S. L. Rumyantsev, N. Pala, M. S. Shur, R. Gaska, M. E. Levinshtein, M. A. Khan, G. Simin, X. Hu and J. Yang, Electron. Lett., Vol. 37, pp. 720, 2001.
[41] L. Anghel, T. Ouisse, T. Billon, P. Lassagne and C. Jaussaud, Semicond. Conf. International, Vol. 2, pp. 539, 1996.
Chapter 5
[1] Y. Chen, D. M. Bagnal, H.-J. Koh, K.-T. Park, K. Hiraga, Z. Zhu, and T. Yao, J. Appl. Phys., Vol. 84, pp.3912, 1998.
[2] R. D. Vispute, M. He, X. Tang, Y. X. Li, L. G. Salamanca-Riba, A. A. Iliadis, K. A. Jones, Appl. Phys. Lett., Vol. 73, pp. 348, 1998.
[3] D. C. Look, Mater. Sci. Eng. B., Vol. 80, pp. 383, 2001.
[4] “Abstract Booklet, Second International Workshop on Zinc Oxide”, edited by D. C. Look ~Wright State University, Dayton, 2002.
[5] B. M. Ataev, Y. I. Alivov, V. A. Nikitenko, M. V. Chukichev, V. V. Mamedov, S. S. Makhmudov, J. Optoelectronics and Advanced Materials, Vol. 5, p. 899, 2003.
[6] Clement Yuen, S. F. Yu, Eunice S. P. Leong, H. Y. Yang, S. P. Lau,
N. S. Chen, and H. H. Hng, Appl. Phys. Lett., Vol. 86, pp. 031112, 2005.
[7] M. J. Liu and H. K. Kim, Appl. Phys. Lett., Vol. 84, pp. 173, 2004.
[8] K. Ip, Y.W. Heo, D.P. Norton, S.J. Pearton, J.R. LaRoche, F. Ren, Appl. Phys. Lett., Vol. 85, pp. 1169, 2004.
[9] A. Tsukazaki, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S.F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, M. Kawasaki, Nat. Mater., Vol. 4, pp. 42, 2005.
[10] W.Z. Xu, Z.Z. Ye, Y.J. Zeng, L.P. Zhu, B.H. Zhao, L. Jiang, J.G. Lu, H.P. He, S.B. Zhang, Appl. Phys. Lett., Vol. 88, pp. 173506, 2006.
[11] Ya. I. Alivov, J. E. Van Nostrand, D. C. Look, M. V. Chukichev, and B. M. Ataev, Appl. Phys. Lett., Vol. 83, pp. 2493, 2003.
[12] Ya. I. Alivov, E. V. Kalinina, A. E. Cherenkov, D. C. Look, B. M. Ataev, A. K. Omaev, M. V. Chukichev, and D. M. Bagnall, Appl. Phys. Lett., Vol. 83, pp. 4719, 2003.
[13] A. E. Tsurkan, N. D. Fedotova, L. V. Kicherman, and P. G. Pas’ko, Semiconductors, Vol. 6, pp. 1183, 1975.
[14] I. T. Drapak, Semiconductors 2, 624 s1968d. 9H. Hosono, H. Ohta, K. Hayashi, M. Orita, and M. Hirano, J. Cryst. Growth, Vol. 496, pp. 237, 2001.
[15] A. Osinsky, J. W. Dong, M. Z. Kauser, B. Hertog, A. M. Dabiran, P. P. Chow, S. J. Pearton, O. Lopatiuk, and L. Chernyak, Appl. Phys. Lett., Vol. 85, pp. 4272, 2004.
[16] H. Y. XU, Y. C. LIU, Y. X. LIU, C. S. XU, C. L. SHAO, and R. MU Appl. Phys. B., Vol. 80, pp. 871, 2005.
[17] Dae-Kue Hwang, Soon-Hyung Kang, Jae-Hong Lim, Eun-Jeong Yang, Jin-Yong Oh, Jin-Ho Yang, and Seong-Ju Park, Appl. Phys. Lett., Vol. 86, pp. 222101, 2005.
[18] D. J. Rogers, F. Hosseini Teherani, A. Yasan, K. Minder, P. Kung, and M. Razeghi, Appl. Phys. Lett., Vol. 88, pp. 141918, 2006.
[19] H. L. Zhou, S. J. Chua, H. Pan, J. Y. Lin, Y. P. Feng, L. S. Wang, W. Liu, K. Y. Zang, and S. Tripathy, Electrochem. Solid State Lett. , Vol. 10, pp. 98, 2007.
[20] Hiroshi Amano, Masahiro Kitoh, Kazumasa Hiramatsu, and Isamu Akasaki, J. Electrochem. Soc., Vol. 137, pp. 1639, May 1990
[21] W. Liu, S. L. Gu, J. D. Ye, S. M. Zhu, S. M. Liu, X. Zhou, R. Zhang, Y. Shi, Y. D. Zheng, Y. Hang, and C. L. Zhang, Appl. Phys. Lett., Vol. 88, pp. 092101, 2006.
[22] S. Nakamura, T. Mukai, and M. Senon, Jpn. J. Appl. Phys. Part 2, Vol. 30, pp. 1998, 1991.
[23] R. J. Molnar, R. Singh, and T. D. Moustakas, Appl. Phys. Lett., Vol. 66, pp. 268, 1995.
[24] B. Goldenberg, J. D. Zook, and R. J. Ulmer, Appl. Phys. Lett., Vol. 62, pp. 381, 1992.
[25] T. W. Kang, S. H. Park, H. Song, T. W. Kim, G. S. Yoon and C. O. Kim, J. Appl. Phys., Vol. 84, pp. 2082, 1998.
Chapter 6
[1] D. P. Yu, Z. G. Bai, Y. Ding, Q. L. Hang, H. Z. Zhang, J. J.Wang, Y. H.
Zou, W. Qian, G. C. Xiong, H. T. Zhou, and S. Q. Feng, Appl. Phys. Lett., Vol. 72, pp. 3458, 1998.
[2] W. Q. Han, S. S. Fan, Q. Q. Li, and Y. D. Hu, Science, Vol. 277, pp. 1287, 1997.
[3] J. J. Wu and S. C. Liu, Adv. Mater., vol. 14, pp. 215–218, 2002.
[4] W. I. Park, Y. H. Jun, S. W. Jung, and G. C. Yi, Appl. Phys. Lett., Vol. 82, pp. 964, 2003.
[5] N. Pan, X. Wang, K. Zhang, H. Hu, B. Xu, F. Li, and J. G. Hou, Nanotechnol., Vol. 16, pp. 1069, 2005.
[6] Y. C. Kong, D. P. Yu, B. Zhang, W. Fang, and S. Q. Feng, Appl. Phys. Lett., Vol. 78, pp. 407, 2001.
[7] Z. W. Pan, Z. R. Dai, and Z. L. Wang, Science, Vol. 291, pp. 1947, 2001.
[8] Y. Du, S. Han, W. Jin, C. Zhou, and A. F. J. Levi, Appl. Phys. Lett., Vol. 83, pp. 996, 2003.
[9] K. Keem, H. Kim, G. T. Kim, J. S. Lee, B. Min, K. Cho, M. Y. Sung, and S. Kim, Appl. Phys. Lett., Vol. 84, pp. 4376, 2004.
[10] Y. W. Heo, B. S. Kang, L. C. Tien, D. P. Norton, F. Ren, J. R. LaRoche, and S. J. Pearton, Appl. Phys. A, Vol. 80, pp. 497, 2005.
[11] R. L. Hoffman, B. J. Norris, J. F. Wager, Appl. Phys. Lett., Vol. 82, pp. 733, 2003.
校內:2057-06-25公開