簡易檢索 / 詳目顯示

研究生: 李侑宸
Li, Yu-Chen
論文名稱: 雙層Al2O3/BFO電阻式記憶體之切換行為與神經型態特性探討
Investigation of Resistive Switching and Synaptic Properties in Bilayer Al2O3/BFO RRAM Structures
指導教授: 莊文魁
Chuang, Ricky W.
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 奈米積體電路工程碩士博士學位學程
MS Degree/Ph.D. Program on Nano-Integrated-Circuit Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 132
中文關鍵詞: 電阻式隨機存取記憶體雙層結構氧化鋁突觸可塑性類神經形態運算
外文關鍵詞: Resistive Random-Access Memory (ReRAM), Bilayer Structure, Aluminum Oxide (Al2O3), Synaptic Plasticity, Neuromorphic Computing
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著人工智慧(Artificial Intelligence)與邊緣運算(Edge Computing)需求快速成長,傳統馮紐曼架構(Von Neumann Architecture)在資料傳輸與能耗效率上逐漸面臨瓶頸。為模擬人腦中突觸的可塑性與並行處理特性,發展具備神經形態運算功能(Neuromorphic Computing)之非揮發性記憶體元件(Non-Volatile Memory Devices)成為重要研究方向。其中,電阻式記憶體(Resistive Random-Access Memory, RRAM)因其結構簡單、與CMOS製程兼容性高與多階電導特性而備受關注。然而,為實現具穩定的類突觸行為之RRAM元件,仍需針對材料堆疊設計與導電通道調控機制進行深入探討。
    本研究針對具備神經形態應用潛力之雙層結構RRAM元件進行設計與分析,選用高能障材料氧化鋁(Aluminum Oxide, Al2O3)與鐵電氧化物鐵酸鉍(Bismuth Ferrite, BiFeO3, BFO)構成雙層切換層,系統性調控其厚度比例,評估其對元件電性、導電機制及神經形態特性的影響。實驗結果顯示,所有樣品皆展現穩定的雙極性電阻切換行為(Bipolar Resistive Switching),且隨著Al2O3占比提高,元件切換行為由漸進式導通/突變式中斷(Gradual Set / Abrupt Reset)漸轉為突變式導通/漸進式中斷(Abrupt Set / Gradual Reset),對應導電通道生成與斷裂過程受結構所調控之趨勢。
    導電機制分析顯示,較厚的BFO結構具備明確之歐姆傳導(Ohmic Conduction)、PF發射(Poole–Frenkel Emission)與F-N穿隧(Fowler–Nordheim Tunneling)等多階段導電行為,而當Al2O3占比提高時,穿隧機制逐漸消失,轉為以陷阱輔助遷移為主之漸進式導電特性。此外,在神經形態脈衝測試中,三組雙層結構皆展現可逆電導調變能力,且具備長期增強與抑制(Long-Term Potentiation and Depression, LTP/LTD)以及成對脈衝促進(Paired-Pulse Facilitation, PPF)等類突觸行為,並可對應其切換特性與材料堆疊比例。實驗結果中所得時間常數亦落於生物突觸短期可塑性(Short-Term Synaptic Plasticity)之時程範圍,顯示其模擬類神經行為之可行性。

    With the rapid advancement of artificial intelligence (AI) and edge computing technologies, the traditional von Neumann architecture is increasingly facing bottlenecks in data throughput and energy efficiency. To mimic the plasticity and parallel processing capability of biological synapses, developing non-volatile memory devices with neuromorphic computing functionality has become a primary research focus. Among them, resistive random-access memory (ReRAM) devices have attracted considerable attention due to their simple structure, high integration potential, and multi-level conductance states. However, achieving reliable synaptic-like behavior in ReRAM still requires detailed investigations into material stacking design and filament modulation mechanisms.
    In this study, a bilayer switching structure comprising aluminum oxide (Al₂O₃) and bismuth ferrite (BiFeO₃) was developed to investigate its influence on resistive switching behavior, conduction mechanisms, and neuromorphic characteristics. The thickness ratio between the two layers was systematically varied to evaluate its effect on overall device performance. Experimental results show that all devices exhibit stable bipolar resistive switching, and with increasing Al2O3 content, the switching transition evolves from gradual set / abrupt reset to abrupt set / gradual reset.
    Conduction mechanism analysis reveals that thicker BFO devices follow a three-stage transition — Ohmic conduction, Poole-Frenkel emission, and Fowler-Nordheim tunneling, while increased Al2O3 content suppresses tunneling behavior and promotes trap-assisted gradual conduction. Furthermore, all bilayer samples demonstrate reversible conductance modulation under pulse stimulation, exhibiting long-term potentiation and depression (LTP/LTD) and paired-pulse facilitation (PPF), in correlation with their respective switching behavior and layer proportions. The extracted time constants fall within the timescale of biological short-term synaptic plasticity, indicating the feasibility of mimicking transient neural learning behaviors.

    中文摘要 I SUMMARY III 誌謝 XXVIII 目錄 XXX 表目錄 XXXIII 圖目錄 XXXIV 第一章 緒論 1 1.1 前言 1 1.2 研究背景與動機 3 1.3 論文架構簡介 4 1.4 參考文獻 5 第二章 文獻回顧 8 2.1 非揮發性記憶體簡介 8 2.1.1 電阻式記憶體(RRAM) 9 2.2 電阻切換機制 12 2.2.1 電化學金屬化機制(ECM) 13 2.2.2 價態變化機制(VCM) 14 2.2.3 熱化學機制(TCM) 15 2.3 薄膜電流傳導機制 16 2.3.1 電極限制傳導 16 2.3.2 本體限制傳導 20 2.4 仿生突觸元件之應用 25 2.4.1 短期可塑性(Short-Term Plasticity, STP) 27 2.4.2 長期可塑性(Long-Term Plasticity, LTP) 29 2.4.3 時間依賴可塑性(Spike-Timing Dependent Plasticity, STDP) 31 2.5 切換層材料介紹 33 2.5.1 BFO薄膜特性 33 2.5.2 Al2O3薄膜特性 35 2.6 參考文獻 36 第三章 元件製作流程 42 3.1 實驗儀器介紹 42 3.1.1 磁控濺鍍薄膜沉積 42 3.1.2 電子束蒸鍍薄膜沉積 43 3.1.3 退火製程 44 3.1.4 表面輪廓儀 45 3.1.5 X光繞射分析儀 46 3.1.6 X射線光電子能譜儀 46 3.2 元件製程介紹 47 3.2.1 基板切割與清洗 47 3.2.2 切換層薄膜沉積 48 3.2.3 上電極沉積製程 50 3.3 參考文獻 51 第四章 量測結果與討論 53 4.1 BFO與Al2O3薄膜分析 53 4.1.1 XRD薄膜分析 53 4.2 RRAM電性量測 56 4.2.1 電性量測流程 56 4.2.2 實驗設計 57 4.2.3 I-V特性曲線分析 58 4.2.4 切換電壓統計 67 4.2.5 開關電流比與循環穩定性分析 69 4.3 電阻切換與導電機制探討 71 4.4 神經形態脈衝量測 74 4.4.1 長期增強與抑制 75 4.4.2 成對脈衝促進 79 4.5 電流傳導機制分析 81 4.6 參考文獻 83 第五章 結論與未來工作 84 5.1 結論 84 5.2 未來工作 86 參考文獻 87

    [1] P. G. A. Lin, and A. Wong, "Edge Speech Nets: Highly efficient deep neural networks for speech recognition on the edge," IEEE Transactions on Neural Networks and Learning Systems, vol. 32, no. 10, pp. 4396–4408, 2021.
    [2] Y. L. L. Tang, W. Shi, and Q. Yang, "π-Edge: A low-power edge computing system for real-time autonomous driving services," IEEE Transactions on Industrial Informatics, vol. 17, no. 1, pp. 510–519, Jan. 2021.
    [3] G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian, J. van der Laak, B. van Ginneken, and C. I. Sanchez, "A survey on deep learning in medical image analysis," Med Image Anal, vol. 42, pp. 60-88, Dec 2017.
    [4] S. D. A. van den Oord, and B. Schrauwen, "Deep content-based music recommendation," Advances in Neural Information Processing Systems, vol. 26, pp. 2643–2651, 2013.
    [5] A. Gholami, Z. Yao, S. Kim, C. Hooper, M. W. Mahoney, and K. Keutzer, "AI and Memory Wall," IEEE Micro, vol. 44, no. 3, pp. 33-39, 2024.
    [6] A. Sebastian, M. Le Gallo, R. Khaddam-Aljameh, and E. Eleftheriou, "Memory devices and applications for in-memory computing," Nat Nanotechnol, vol. 15, no. 7, pp. 529-544, Jul 2020.
    [7] H. Wang and X. Yan, "Overview of Resistive Random Access Memory (RRAM): Materials, Filament Mechanisms, Performance Optimization, and Prospects," physica status solidi (RRL) – Rapid Research Letters, vol. 13, no. 9, 2019.
    [8] Z. Shen, C. Zhao, Y. Qi, W. Xu, Y. Liu, I. Z. Mitrovic, L. Yang, and C. Zhao, "Advances of RRAM Devices: Resistive Switching Mechanisms, Materials and Bionic Synaptic Application," Nanomaterials (Basel), vol. 10, no. 8, Jul 23 2020.
    [9] K. Moon, S. Lim, J. Park, C. Sung, S. Oh, J. Woo, J. Lee, and H. Hwang, "RRAM-based synapse devices for neuromorphic systems," Faraday Discuss, vol. 213, no. 0, pp. 421-451, Feb 18 2019.
    [10] F. Zahoor, T. Z. Azni Zulkifli, and F. A. Khanday, "Resistive Random Access Memory (RRAM): an Overview of Materials, Switching Mechanism, Performance, Multilevel Cell (mlc) Storage, Modeling, and Applications," Nanoscale Res Lett, vol. 15, no. 1, p. 90, Apr 22 2020.
    [11] H. S. P. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P.-S. Chen, B. Lee, F. T. Chen, and M.-J. Tsai, "Metal–Oxide RRAM," Proceedings of the IEEE, vol. 100, no. 6, pp. 1951-1970, 2012.
    [12] G. Pedretti and D. Ielmini, "In-Memory Computing with Resistive Memory Circuits: Status and Outlook," Electronics, vol. 10, no. 9, 2021.
    [13] S. Yu, W. Shim, X. Peng, and Y. Luo, "RRAM for Compute-in-Memory: From Inference to Training," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 68, no. 7, pp. 2753-2765, 2021.
    [14] J. Kim, J. Park, and S. Kim, "Bipolar Switching Characteristics of Transparent WOx-Based RRAM for Synaptic Application and Neuromorphic Engineering," Materials (Basel), vol. 15, no. 20, Oct 15 2022.
    [15] H. Ryu and S. Kim, "Synaptic Characteristics from Homogeneous Resistive Switching in Pt/Al2O3/TiN Stack," Nanomaterials (Basel), vol. 10, no. 10, Oct 18 2020.
    [16] G. Ekinci, B. Ozkal, and S. Kazan, "Investigation of Resistance Switching and Synaptic Properties of VOx for Neuromorphic Applications," ACS Omega, vol. 9, no. 24, pp. 26235-26244, Jun 18 2024.
    [17] C. Y. Lin, J. Chen, P. H. Chen, T. C. Chang, Y. Wu, J. K. Eshraghian, J. Moon, S. Yoo, Y. H. Wang, W. C. Chen, Z. Y. Wang, H. C. Huang, Y. Li, X. Miao, W. D. Lu, and S. M. Sze, "Adaptive Synaptic Memory via Lithium Ion Modulation in RRAM Devices," Small, vol. 16, no. 42, p. e2003964, Oct 2020.
    [18] Q. Wang, Y. Wang, R. Luo, J. Wang, L. Ji, Z. Jiang, C. Wenger, Z. Song, S. Song, W. Ren, J. Bi, and G. Niu, "Ultrathin HfO2/Al2O3 bilayer based reliable 1T1R RRAM electronic synapses with low power consumption for neuromorphic computing," Neuromorphic Computing and Engineering, vol. 2, no. 4, 2022.
    [19] J. Woo, A. Padovani, K. Moon, M. Kwak, L. Larcher, and H. Hwang, "Linking Conductive Filament Properties and Evolution to Synaptic Behavior of RRAM Devices for Neuromorphic Applications," IEEE Electron Device Letters, vol. 38, no. 9, pp. 1220-1223, 2017.
    [20] P. Basnet, E. C. Anderson, F. F. Athena, B. Chakrabarti, M. P. West, and E. M. Vogel, "Asymmetric Resistive Switching of Bilayer HfOx/AlOy and AlOy/HfOx Memristors: The Oxide Layer Characteristics and Performance Optimization for Digital Set and Analog Reset Switching," ACS Applied Electronic Materials, vol. 5, no. 3, pp. 1859-1865, 2023.
    [21] H. Jeon, J. Park, W. Jang, H. Kim, S. Ahn, K.-J. Jeon, H. Seo, and H. Jeon, "Detection of oxygen ion drift in Pt/Al2O3/TiO2/Pt RRAM using interface-free single-layer graphene electrodes," Carbon, vol. 75, pp. 209-216, 2014.
    [22] J. Woo, K. Moon, J. Song, S. Lee, M. Kwak, J. Park, and H. Hwang, "Improved Synaptic Behavior Under Identical Pulses Using AlOx/HfO2 Bilayer RRAM Array for Neuromorphic Systems," IEEE Electron Device Letters, vol. 37, no. 8, pp. 994-997, 2016.
    [23] F.-C. Chiu, "A Review on Conduction Mechanisms in Dielectric Films," Advances in Materials Science and Engineering, vol. 2014, pp. 1-18, 2014.
    [24] E. Lim and R. Ismail, "Conduction Mechanism of Valence Change Resistive Switching Memory: A Survey," Electronics, vol. 4, no. 3, pp. 586-613, 2015.
    [25] Y. Zhai, A. Fan, K. Zhong, D. V. Karpinsky, Q. Gao, J. Yi, and L. Liu, "Great enhancement of ferroelectric properties of Al2O3-modified BiFeO3 thin films obtained by sol-gel method," Journal of the European Ceramic Society, vol. 44, no. 1, pp. 224-232, 2024.
    [26] C. Mahata, M. Kang, and S. Kim, "Multi-Level Analog Resistive Switching Characteristics in Tri-Layer HfO2/Al2O3/HfO2 Based Memristor on ITO Electrode," Nanomaterials (Basel), vol. 10, no. 10, Oct 20 2020.
    [27] G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian, J. van der Laak, B. van Ginneken, and C. I. Sanchez, "A survey on deep learning in medical image analysis," Med Image Analysis, vol. 42, pp. 60-88, Dec 2017.
    [28] S. Ambrogio, S. Balatti, V. Milo, R. Carboni, Z.-Q. Wang, A. Calderoni, N. Ramaswamy, and D. Ielmini, "Neuromorphic Learning and Recognition With One-Transistor-One-Resistor Synapses and Bistable Metal Oxide RRAM," IEEE Transactions on Electron Devices, vol. 63, no. 4, pp. 1508-1515, 2016.
    [29] W.-J. Chen, C.-H. Cheng, P.-E. Lin, Y.-T. Tseng, T.-C. Chang, and J.-S. Chen, "Analog Resistive Switching and Synaptic Functions in WOx/TaOx Bilayer through Redox-Induced Trap-Controlled Conduction," ACS Applied Electronic Materials, vol. 1, no. 11, pp. 2422-2430, 2019.
    [30] C. Mahata, C. Lee, Y. An, M.-H. Kim, S. Bang, C. S. Kim, J.-H. Ryu, S. Kim, H. Kim, and B.-G. Park, "Resistive switching and synaptic behaviors of an HfO2/Al2O3 stack on ITO for neuromorphic systems," Journal of Alloys and Compounds, vol. 826, 2020.
    [31] M. Qi, T. Fu, H. Yang, Y. Tao, C. Li, and X. Xiu, "Reliable analog resistive switching behaviors achieved using memristive devices in AlOx /HfOx bilayer structure for neuromorphic systems," Semiconductor Science and Technology, vol. 37, no. 3, 2022.
    [32] D. Panda, C. A. Chu, A. Pradhan, S. Chandrasekharan, B. Pattanayak, S. M. Sze, and T. Y. Tseng, "Synaptic behaviour of TiOx/HfO2 RRAM enhanced by inserting ultrathin Al2O3 layer for neuromorphic computing," Semiconductor Science and Technology, vol. 36, no. 4, 2021.
    [33] J. Lin, H. Liu, and S. Wang, "Research on electronic synaptic simulation of HfO2-based memristor by embedding Al2O3," Nanotechnology, vol. 35, no. 1, Oct 13 2023.
    [34] D. K. a. S. M. Sze, "A floating‑gate and its application to memory devices," The Bell System Technical Journal, vol. 46, no. 4, pp. 1288–1295, May 1967.
    [35] 巫勇賢, "實現下世代「記憶體內運算」的關鍵?鐵電記憶體商用還有多遠?," TechNews 科技新報, 2022.
    [36] M. J. B. G. W. Burr, M. Franceschini, D. Garetto, K. Gopalakrishnan, B. Jackson, B. Kurdi, C. Lam, L. A. Lastras, A. Padilla, B. Rajendran, S. Raoux, and R. S. Shenoy, "Phase change memory technology," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 28, no. 2, pp. 223–262, Mar. 2010.
    [37] D. Apalkov, B. Dieny, and J. M. Slaughter, "Magnetoresistive Random Access Memory," Proceedings of the IEEE, vol. 104, no. 10, pp. 1796-1830, 2016.
    [38] R. C. Sousa and I. L. Prejbeanu, "Non-volatile magnetic random access memories (MRAM)," Comptes Rendus. Physique, vol. 6, no. 9, pp. 1013-1021, 2005.
    [39] S. Munjal and N. Khare, "Advances in resistive switching based memory devices," Journal of Physics D: Applied Physics, vol. 52, no. 43, 2019.
    [40] M. C. Wu, Y. H. Ting, J. Y. Chen, and W. W. Wu, "Low Power Consumption Nanofilamentary ECM and VCM Cells in a Single Sidewall of High-Density VRRAM Arrays," Adv Sci (Weinh), vol. 6, no. 24, p. 1902363, Dec 2019.
    [41] C. Sun, S. M. Lu, F. Jin, W. Q. Mo, J. L. Song, and K. F. Dong, "The Resistive Switching Characteristics of TiN/HfO2/Ag RRAM Devices with Bidirectional Current Compliance," Journal of Electronic Materials, vol. 48, no. 5, pp. 2992-2999, 2019.
    [42] J. Lee, W. Schell, X. Zhu, E. Kioupakis, and W. D. Lu, "Charge Transition of Oxygen Vacancies during Resistive Switching in Oxide-Based RRAM," ACS Appl Mater Interfaces, vol. 11, no. 12, pp. 11579-11586, Mar 27 2019.
    [43] D. Ielmini, F. Nardi, and C. Cagli, "Universal Reset Characteristics of Unipolar and Bipolar Metal-Oxide RRAM," IEEE Transactions on Electron Devices, vol. 58, no. 10, pp. 3246-3253, 2011.
    [44] E. R. Singh, M. W. Alam, and N. K. Singh, "Capacitive and RRAM Forming-Free Memory Behavior of Electron-Beam Deposited Ta2O5 Thin Film for Nonvolatile Memory Application," ACS Applied Electronic Materials, vol. 5, no. 6, pp. 3462-3469, 2023.
    [45] Y. Jiang, C. C. Tan, M. H. Li, Z. Fang, B. B. Weng, W. He, and V. Y. Q. Zhuo, "Forming-Free TaOxBased RRAM Device with Low Operating Voltage and High On/Off Characteristics," ECS Journal of Solid State Science and Technology, vol. 4, no. 12, pp. N137-N140, 2015.
    [46] S.-J. Wu, F. Wang, Z.-C. Zhang, Y. Li, Y.-M. Han, Z.-C. Yang, J.-S. Zhao, and K.-L. Zhang, "High uniformity and forming-free ZnO-based transparent RRAM with HfO x inserting layer," Chinese Physics B, vol. 27, no. 8, 2018.
    [47] Y. Lee, J. Park, D. Chung, K. Lee, and S. Kim, "Multi-level Cells and Quantized Conductance Characteristics of Al2O3-Based RRAM Device for Neuromorphic System," Nanoscale Res Lett, vol. 17, no. 1, p. 84, Sep 3 2022.
    [48] D. Sun, X. Zhu, S. Chen, H. Fang, G. Zhu, G. Lan, L. He, and Y. Shi, "Uniformity, Linearity, and Symmetry Enhancement in TiOx/MoS2-xOx Based Analog RRAM via S-Vacancy Confined Nanofilament," Nano Lett, vol. 24, no. 51, pp. 16283-16292, Dec 25 2024.
    [49] T. Li, H. Yu, S. H. Y. Chen, Y. Zhou, and S.-T. Han, "The strategies of filament control for improving the resistive switching performance," Journal of Materials Chemistry C, vol. 8, no. 46, pp. 16295-16317, 2020.
    [50] C. Yao, J. Li, H. Zhang, and T. Tian, "Understanding the Reversible Transition of Unipolar and Bipolar Resistive Switching Characteristics in Solution-Derived Nanocrystalline Au-Co3O4 Thin-Film Memristors," ACS Omega, vol. 9, no. 31, pp. 33941-33948, Aug 6 2024.
    [51] K. H. Chen, T. M. Tsai, C. M. Cheng, S. J. Huang, K. C. Chang, S. P. Liang, and T. F. Young, "Schottky Emission Distance and Barrier Height Properties of Bipolar Switching Gd:SiOx RRAM Devices under Different Oxygen Concentration Environments," Materials (Basel), vol. 11, no. 1, Dec 28 2017.
    [52] E. Cassan, S. Galdin, P. Dollfus, and P. Hesto, "Study of direct tunneling through ultrathin gate oxide of field effect transistors using Monte Carlo simulation," Journal of Applied Physics, vol. 86, no. 7, pp. 3804-3811, 1999.
    [53] W. H. T. K. M. Chang, K. C. Liu, and W. R. Lai, "Modulation of the electrical characteristics of HfOx/TiN RRAM devices through the top electrode metal," Dielectrics for Nanosystems 4: Materials Science, Processing, Reliability, and Manufacturing, vol. 28, no. 2, pp. 119–126, 2010.
    [54] J. Bai, W. Xie, W. Zhang, Z. Yin, S. Wei, D. Qu, Y. Li, F. Qin, D. Zhou, and D. Wang, "Conduction mechanism and impedance analysis of HfOx-based RRAM at different resistive states," Applied Surface Science, vol. 600, 2022.
    [55] J. A. Rohr, D. Moia, S. A. Haque, T. Kirchartz, and J. Nelson, "Exploring the validity and limitations of the Mott-Gurney law for charge-carrier mobility determination of semiconducting thin-films," J Phys Condens Matter, vol. 30, no. 10, p. 105901, Mar 14 2018.
    [56] C. P. Kwan, M. Street, A. Mahmood, W. Echtenkamp, M. Randle, K. He, J. Nathawat, N. Arabchigavkani, B. Barut, S. Yin, R. Dixit, U. Singisetti, C. Binek, and J. P. Bird, "Space-charge limited conduction in epitaxial chromia films grown on elemental and oxide-based metallic substrates," AIP Advances, vol. 9, no. 5, 2019.
    [57] F. H. Teherani, D. C. Look, D. J. Rogers, M. Prezioso, F. Merrikh-Bayat, B. Chakrabarti, and D. Strukov, "RRAM-based hardware implementations of artificial neural networks: progress update and challenges ahead," presented at the Oxide-based Materials and Devices VII, 2016.
    [58] H. Kim, J.-H. Bae, S. Lim, S.-T. Lee, Y.-T. Seo, D. Kwon, B.-G. Park, and J.-H. Lee, "Efficient precise weight tuning protocol considering variation of the synaptic devices and target accuracy," Neurocomputing, vol. 378, pp. 189-196, 2020.
    [59] M. Halter, L. Begon-Lours, V. Bragaglia, M. Sousa, B. J. Offrein, S. Abel, M. Luisier, and J. Fompeyrine, "Back-End, CMOS-Compatible Ferroelectric Field-Effect Transistor for Synaptic Weights," ACS Appl Mater Interfaces, vol. 12, no. 15, pp. 17725-17732, Apr 15 2020.
    [60] N. Ilyas, D. Li, C. Li, X. Jiang, Y. Jiang, and W. Li, "Analog Switching and Artificial Synaptic Behavior of Ag/SiOx:Ag/TiOx/p++-Si Memristor Device," Nanoscale Res Lett, vol. 15, no. 1, p. 30, Jan 31 2020.
    [61] G. Indiveri and S.-C. Liu, "Memory and Information Processing in Neuromorphic Systems," Proceedings of the IEEE, vol. 103, no. 8, pp. 1379-1397, 2015.
    [62] W. Maass and H. Markram, "On the computational power of circuits of spiking neurons," Journal of Computer and System Sciences, vol. 69, no. 4, pp. 593-616, 2004.
    [63] L. F. Abbott, & Regehr, W. G, "Synaptic computation," Nature, vol. 431, no. 7010, pp. 796–803, 2004.
    [64] R. Berdan, E. Vasilaki, A. Khiat, G. Indiveri, A. Serb, and T. Prodromakis, "Emulating short-term synaptic dynamics with memristive devices," Sci Rep, vol. 6, p. 18639, Jan 4 2016.
    [65] T. Y. Wang, Z. Y. He, L. Chen, H. Zhu, Q. Q. Sun, S. J. Ding, P. Zhou, and D. W. Zhang, "An Organic Flexible Artificial Bio-Synapses with Long-Term Plasticity for Neuromorphic Computing," Micromachines (Basel), vol. 9, no. 5, May 15 2018.
    [66] A. Padovani, J. Woo, H. Hwang, and L. Larcher, "Understanding and Optimization of Pulsed SET Operation in HfOx-Based RRAM Devices for Neuromorphic Computing Applications," IEEE Electron Device Letters, vol. 39, no. 5, pp. 672-675, 2018.
    [67] N. Qiao, H. Mostafa, F. Corradi, M. Osswald, F. Stefanini, D. Sumislawska, and G. Indiveri, "A reconfigurable on-line learning spiking neuromorphic processor comprising 256 neurons and 128K synapses," Front Neurosci, vol. 9, p. 141, 2015.
    [68] M. Prezioso, F. Merrikh-Bayat, B. D. Hoskins, G. C. Adam, K. K. Likharev, and D. B. Strukov, "Training and operation of an integrated neuromorphic network based on metal-oxide memristors," Nature, vol. 521, no. 7550, pp. 61-4, May 7 2015.
    [69] S. Ki Hong, J. Eun Kim, S. O. Kim, and B. Jin Cho, "Analysis on switching mechanism of graphene oxide resistive memory device," Journal of Applied Physics, vol. 110, no. 4, 2011.
    [70] G. Catalan and J. F. Scott, "Physics and Applications of Bismuth Ferrite," Advanced Materials, vol. 21, no. 24, pp. 2463-2485, 2009.
    [71] H. W. M. Lanza, C. S. Shen, "Recommended methods to study resistive switching devices," Advanced Electronic Materials, vol. 5, no. 1, p. 1800143, 2019.
    [72] J. A. Thornton, "High Rate Thick Film Growth," Annu. Rev. Mater. Sci., vol. 7, no. 1, pp. 239–260, No 2003.
    [73] M. Arif and C. Eisenmenger-Sittner, "In situ assessment of target poisoning evolution in magnetron sputtering," Surface and Coatings Technology, vol. 324, pp. 345-352, 2017.
    [74] "Metal Deposition: Plasma-Based Processes," in Encyclopedia of Plasma Technology, 2016, pp. 722-740.
    [75] A. Bashir, T. I. Awan, A. Tehseen, M. B. Tahir, and M. Ijaz, "Interfaces and surfaces," in Chemistry of Nanomaterials, 2020, pp. 51-87.
    [76] D. Roman, J. Bernardi, C. L. G. d. Amorim, F. S. de Souza, A. Spinelli, C. Giacomelli, C. A. Figueroa, I. J. R. Baumvol, and R. L. O. Basso, "Effect of deposition temperature on microstructure and corrosion resistance of ZrN thin films deposited by DC reactive magnetron sputtering," Materials Chemistry and Physics, vol. 130, no. 1-2, pp. 147-153, 2011.
    [77] C.-Y. Lin, D.-Y. Lee, S.-Y. Wang, C.-C. Lin, and T.-Y. Tseng, "Effect of thermal treatment on resistive switching characteristics in Pt/Ti/Al2O3/Pt devices," Surface and Coatings Technology, vol. 203, no. 5-7, pp. 628-631, 2008.
    [78] B. Zhao, J. Jiang, L. He, J. Meng, W. Geng, Z. Chen, and A. Jiang, "The effect of in situ annealing oxygen pressure on the ferroelectric resistive switching characteristic," Ceramics International, vol. 41, pp. S835-S840, 2015.
    [79] H. Deng, M. Zhang, T. Li, J. Wei, S. Chu, M. Du, and H. Yan, "Nonvolatile unipolar resistive switching behavior of amorphous BiFeO3 films," Journal of Alloys and Compounds, vol. 639, pp. 235-238, 2015.
    [80] G. F. H. a. J. Santiso, "Back-to-Basics tutorial: X ray diffraction of thin films," Journal of Electroceramics, vol. 47, pp. 141–163, Oct 2021.
    [81] M. Bouroushian and T. Kosanovic, "Characterization of Thin Films by Low Incidence X-Ray Diffraction," Crystal Structure Theory and Applications, vol. 01, no. 03, pp. 35-39, 2012.
    [82] S. Ho and A. G. Jacob, "A brief overview of X-ray photoelectron spectroscopy characterization of thin films," Research Journal of Chemistry and Environment, vol. 28, no. 1, pp. 142-160, 2023.
    [83] T. V. Perevalov, O. E. Tereshenko, V. A. Gritsenko, V. A. Pustovarov, A. P. Yelisseyev, C. Park, J. H. Han, and C. Lee, "Oxygen deficiency defects in amorphous Al2O3," Journal of Applied Physics, vol. 108, no. 1, 2010.
    [84] Z. Guo, F. Ambrosio, and A. Pasquarello, "Oxygen defects in amorphous Al2O3: A hybrid functional study," Applied Physics Letters, vol. 109, no. 6, 2016.

    無法下載圖示 校內:2030-08-15公開
    校外:2030-08-15公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE