| 研究生: |
曾俊豪 Tseng, Chun-Hao |
|---|---|
| 論文名稱: |
利用新穎電漿技術改質奈米碳管以製備導電複合材料之研究 Preparation of Conductive Carbon Nanotube Nanocomposites by Using Plasma Modification Technique |
| 指導教授: |
陳志勇
Chen, Chuh-Yung |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 152 |
| 中文關鍵詞: | 接枝聚合 、CdS奈米粒子 、Ag奈米粒子 、電漿表面處理技術 、奈米碳管/高分子導電複合材料 |
| 外文關鍵詞: | Ag nanoparticles, CNTs/polymer conductive nanocomposites, CdS nanoparticles, Plasma-induced grafting polymerization |
| 相關次數: | 點閱:103 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
奈米碳管(CNTs)由於具有許多特殊的性質,使其在眾多領域具有應用的前景,尤其在奈米碳管/高分子導電複合材料和作為其他奈米材料成長基板的應用上,相當受到工業和學術界的關注。然而無機奈米碳管和有機相的不相容性和受碳管自身的凡得瓦力造成相互糾結在一起的現象,使的它在有機高分子和極性水溶液中無法有效的分散,進而限制其應用範圍和商業化的價值。因此,本研究的主要目的為利用新穎的電漿表面處理技術,將無機奈米碳管表面有機化改質,增加其後續作為奈米碳管複合材料的應用性。
本研究第一部份即使用電漿表面處理的技術將親油性順丁烯二酸酐(Maleic anhydride, MA)分子和親水性甲基丙烯酸二羥基乙酯(2-hydroxyethyl methacrylate, HEMA)高分子接枝聚合於奈米碳管表面,分別簡稱為CNTs-MA和CNTs-HEMA,並利用改質後奈米碳管製備出一系列的奈米碳管/環氧樹脂導電複合材料和奈米碳管/高分子導電複合材料。其中透過穩定度測試和顯微鏡的觀測得知改質後奈米碳管可於有機溶劑和水溶液中均勻的分散,且和未改質的奈米碳管相比可呈現更加優越的分散穩定性。在奈米碳管/環氧樹脂導電複合材料方面,發現藉由CNTs-MA的添加可有效的提升環氧樹脂的機械強度、熱安定性和表面導電特性,在1.0 wt%的CNTs-MA添加量時,複材的玻璃轉移溫度(Tg)和熱裂解溫度(Td at 5 wt%)和純的環氧樹脂相比提高了12°C和21°C,表面導電度可由1.2×10-11 s/cm上升至5.5×10-3 s/cm,而這些奈米材料的楊氏模數和抗拉強度同樣高於純的環氧樹脂。在奈米碳管/高分子導電複合材料方面主要著重在碳管添加後複材呈現的導電特性探討,在1.0 wt%的CNTs-HEMA添加下,複材的表面導電度可由9.3×10-11 s/cm提升至2.2×10-4 s/cm。另外,進一步控制酸洗純化步驟特地在碳管內留下較多強飽合磁化量的鐵粒子觸媒,再利用外加磁場的方式製備所得的複材,表面導電度可提高至5.8×10-3 s/cm,此複合材料並具有一面絕緣和另一面導電的特殊非等方向性導電特性。本文更進一步使用另一種新的製成方式,即先於碳管欲分散的高分子基材中成長大量均勻分散的導電銀奈米粒子,並發現藉由這些銀奈米粒子的存在可提高電子藉由量子穿遂導通的機率而使複材的表面導電性可再向上提升至2.1×10-2 s/cm。
本研究的第二部分即使用電漿表面改質接枝後的奈米碳管作為其他零維奈米材料成長的基板,主要為將螯合性高分子GMA-IDA接枝於奈米碳管表面(CNTs-G-I)來作為CdS奈米粒子成長的基板,透過拉曼、FT-IR和XPS光譜的分析和鑑定發現改變電漿處理的時間可控制於奈米碳管表面GMA-IDA高分子的接枝量,在還原的步驟中,當S2-離子還原濃度為5.0x10-3 M 和1.0x10-2 M時,分佈於奈米碳管上的CdS奈米粒子平均粒徑分別為2.5 ~ 3.0 nm和5.0 ~ 6.5 nm。另外,本研究第一部份所得的改質奈米碳管, CNTs-HEMA,並將其作為導電Ag奈米粒子成長的基板,探討初始的銀離子螯合濃度、還原時間和反應溫度對分佈於奈米碳管表面的銀奈米粒子尺寸大小和型態的影響,進而發現隨著銀離子螯合濃度的增加及還原時間的拉長,成長於奈米碳管上的銀奈米粒子數量和尺寸會隨之增多且變大,當反應溫度由50°C提高至110°C時,銀奈米粒子的粒徑由31.6 nm增加至70.2 nm。
Carbon nanotubes (CNTs) have attracted considerable attention because of their extraordinary properties and potential applications in various fields. However, the field of CNTs has beset by number of problems. For instance, because of the intrinsic van der Waals attraction of the CNTs to each other, which is associated with their aspect ration (up to 1000), CNTs tend to form bundles and ropes, having very low solubility in most solvents and leading to a poor dispersion when mixed into the polymer matrix. In light of the problems, this investigation proposes a straightforward one-step method for funtionalizing multi-walled carbon nanotubes (MWNTs) via direct treatmentment of plasma and subsequently using to fabricate nanotube composites.
In the first section of this study, fully-integrated nanotube/epoxy conductive nanocomposite and nanotube/polymer conductive nanocomposite systems were developed by using plasma-modified CNTs-MA and CNTs-HEMA. The modified nanotubes showed good dispersion and superior stability comparing with the unmodified nanotubes (u-CNTs) in organic solvents and aqueous solution by the observations of optical microscopy and stability evaluation. For the CNTs-MA/epoxy conductive nanocomposites, the results showed that the mechanical, thermal and electrical properties were efficiently improved by the incorporation of the CNTs-MA. With 1.0 wt% addition of CNTs-MA, the Tg and T5% of the nanocomposites increased by 12°C and 21°C respectively comparing with the pristine epoxy. Moreover, the surface conductivity was increased form 1.2×10-11 s/cm to 5.5×10-3 s/cm with 1.0 wt% CNTs-MA addition. For the CNT-HEMA/polymer conductive nanocomposites, the main purpose of this part is focused on the performance of the electrical properties after the incorporation of the modified nanotubes. At first, the surface conductivity was increased from 9.3×10-11 s/cm to 2.2×10-4 s/cm with 1.0 wt% CNTs-HEMA addition. Moreover, an external magnetic field of 1 T was applied to the well-dispersed CNTs-HEMA/polymer conductive nanocomposites with entrapped Fe catalysts inside the nanotubes which showed an increase of surface conductivity to 5.8×10-3 s/cm and presented an anisotropic electrical property. Furthermore, with the pre-grown silver nanoparticles inside the polymer matrix, the surface conductivity of the nanocomposite further improved to 2.1×10-2 s/cm due to the phenomenon of electron tunneling.
In the second section of this study, the plasma-modified nanotubes were used as templates for the growth of other nanomaterials. A chelating vinyl monomer, 2-methacrylic acid 3-(bis-carboxymethylamino)-2-hydroxy-propyl ester (GMA-IDA) was grafted onto the CNTs after plasma treatment and the chelating groups, -N(CH2COO–)2 in the GMA-IDA polymer were the coordination sites for chelating cadmium ions, and served as nano-templates for the growing of CdS nanocrystals (quantum dots). The grafting amount of the GMA-IDA polymer on the CNTs were monitored by a Fourier transform infrared (FT-IR), Raman and XPS spectroscopes. Moreover, the particle size of the CdS nanoparticles on the CNT surfaces were 2.5 ~ 3.0 nm and 5.0 ~ 6.5 nm as the concentration of S2- solution were 5.0 x 10-3 M and 1.0 x 10-2 M respectively. Additionally, the CNTs-HEMA were also functioned as templates for the growth of Ag nanoparticles because the hydroxyl (-OH) group of the HEMA polymer can be the coordination sites to chelate silver ions. The obtained results showed that the particle size and growing amount of the Ag nanoparticles on the CNTs increased with the Ag+ chelating concentration, reaction time and reaction temperature. The mean diameters of the Ag nanoparticles were 31.6 nm, 42.3 nm and 70.2 nm corresponding to the respective reaction temperature 50, 80 and 110°C.
1. Iijima S. Nature 354, 56, 1991.
2. Iijima S., Ichihashi T. Nature 363, 603, 1993.
3. Che J. W., Cagin T., Goddard W. A. Nanotechnology 11, 65, 2000.
4. Britto P. J., Santhanam K. S. V., Rubio A., Alonso J. A., Ajayan P. M. Adv. Mater. 11, 154, 1998.
5. Hamada N., Sawada S. I., Oshiyama A. Phys. Rev. Lett. 68, 1579, 1992.
6. Mintmire J. W., Dunlap B. I., White C. T. Phys. Rev. Lett. 68, 631, 1992.
7. Saito R., Fujita M., Dresselhaus G., Dresselhaus M. S. Appl. Phys. Lett. 60, 2204, 1992.
8. Tans S. J., Verschueren A. R., Dekker C. Nature 393, 49, 1998.
9. Crespi V. H., Coben M. L., Rublo A. Phys Rev Lett. 79, 2093, 1997.
10. Collins P. G., Arnold M. S., Avouris P. Science 292, 706, 2001.
11. Kim P., Lieber C. M. Science 286, 2148, 1999.
12. Akita S. et al. Appl Phys Lett. 79, 1691, 2001.
13. Chen J. et al. Science 282, 95, 1998.
14. Choi W. B. et al. Appl Phys Lett. 75, 3129, 1999.
15. Bonard J. M., Weiss N., Kind H. Adv. Mater. 13, 184, 2001.
16. Murakami H., Hirakawa M., Tanaka C. Appl. Phys. Lett. 76, 1776, 2000.
17. Xu X., Brandes G. R., Appl. Phys. Lett. 74, 2549, 1999.
18. Lee N. S. et al. Jpn. J. Appl. Phys. 39,7154, 2000.
19. Kwo J. L., Yokoyama M., Wang W. C. Chuang F. Y., Lin I. N. Diam. Relat. Mater. 9, 1270, 2000.
20. Chung D. S. et al. J. Vac. Sci. Tech B 18, 1054 2000.
21. Kim J. M., Choi W. B., Lee N. S. Jung J. E. Diam. Relat. Mater. 9, 1184, 2000.
22. Agarwal R. K., Noh J. S., Schwarz J. A. Carbon 25, 219, 1987.
23. Hynek S., Fuller W., Bentley J. Inter. J. Hydrogen Energy 22, 601, 1997.
24. Sircar S. Carbon 25, 39, 1987.
25. Noh J. S., Agarwal R. K., Schwarz J. A. Inter. J. Hydrogen Energy 12, 693, 1987.
26. Amankwah K. G. A., Noh J. S., Schwarz J. A. Inter. J. Hydrogen Energy 14, 437, 1989.
27. Dillon A. C., Jones K. M., Bekkedahl T. A., Kiang C. H., Bethune D. S., Heben M. J. Nature 386, 377, 1997.
28. Dillon A. C., Gennett T., Alleman J. L. Proceedings of the 1999 US DOE hydrogen program review 1999.
29. Dillon A. C., Gennett T., Alleman J. L. Proceedings of the 1999 US DOE hydrogen program review 2000.
30. Cheng H. M., Yang Q. H., Liu C. Carbon 39, 1447, 2001.
31. Fan Y. Y., Liao B., Liu M. Carbon 37, 1649, 1999.
32. Ye Y., Ahn C. C., Witham C. Appl. Phys. Lett. 74, 2307, 1999.
33. Chen Y., Shaw D. T., Bai X. D. Appl. Phys. Lett. 78, 2128, 2001.
34. Badzian A., Badzian T., Breval E. Thin Solid Film 398, 170, 2001.
35. Hirscher M., Becher M., Haluska M. J. Alloy Compd. 330, 654, 2002.
36. Cao A. et al. Chem. Phys. Lett. 342, 510, 2001.
37. Zhu H. W. et al. Appl. Surf. Sci. 178, 50, 2001.
38. Liu C., Fan Y. Y., Liu M., Cong H. T., Cheng H. M., Dresselhaus M. S. Science 286, 1127, 1999.
39. Nishimiya N., Ishigaki H., Takikawa H. J. Alloy Compd. 339, 275, 2002.
40. Ristechel M. et al. Appl. Phys. Lett. 80, 2985, 2002.
41. 范守善, 材料報導, 13, 42, 1999.
42. Ajayan P. M., Ijima S. Nature 361, 333, 1993.
43. Dujardin E., Ebbesen T. W., Hiura H., Tanigaki K. Sience 265, 1850, 1994.
44. Bezryadin A., Lau C. N., Tinkhan M. 2000 Nature 404 971
45. Ausman K. D., Piner R., Lourie O., Ruoff R. S. J. Phys. Chem. B 104, 8911, 2000.
46. Jin R. C., Cao Y. W., Mirkin C. A., Kelly K. L., Schatz G. C., Zheng J. G. Science 294, 1901, 2001.
47. Gould I. R., Lenhard J. R., Muenter A. A., Godleski S. A., Farid S. J. Am. Chem. Soc. 122, 11934, 2000.
48. Zhang J., Xu S., Kumacheva E. J. Am. Chem. Soc. 126, 7908, 2004.
49. Kroll E., Winnik F. M., Ziolo R. F. Chem. Mater. 8, 1594, 1996.
50. Hedden R. C., Bauer B. J., Smith A. P., Grohn F., Amis E. Polymer 43, 5473, 2002.
51. Crooks R. M., Lemon B. I., Sun L., Yeung L. K., Zhao M. Q. Top. Curr. Chem. 212, 81, 2001.
52. Warshawsky A., Upson D. A. J. Polym. Sci. A, Polym. Chem. 27, 2963, 1989.
53. Warshawsky A., Upson D. A. J. Polym. Sci. A, Polym. Chem. 27, 2995, 1989.
54. 王淼、李振華、魯陽, 材料科學與工程, 18, 103, 2000.
55. 張繼紅、魏秉慶、梁吉, 金屬學報, 32, 980, 1996.
56. 王浪雲、塗江平、楊志友, 中國有色金屬學報, 11, 367, 2001.
57. Ma R. Z., Wu J., Wei B. Q. J. Mater. Sci. 33, 5243, 1998.
58. Peigney A., Laurent Ch., Rousset A. Key Engineering Materials 132, 743, 1997.
59. Li Y. B., Wei B. Q., Wu C. L. J. Mater. Sci. 34, 5281, 1999.
60. Shaffer M. S. P., Windle A. H. Adv. Mater. 11, 937, 1999.
61. Cadek M., Coleman J. N., Barron V., Hedicke K., Blau W. J. Appl. Phys. Lett. 81, 5123, 2002.
62. Qian D., Dickey E. C., Andrews R., Rantell T. Appl Phys Lett. 76, 2868, 2000.
63. Xu X., Thwe M. M., Shearwood C., Liao K. Appl. Phys. Lett. 81, 2833, 2002.
64. Gojny F. H., Nastalczyk J., Roslaniec Z., Schulte K. Chem. Phys. Lett. 370, 820, 2003.
65. Jamieson V. New Sci. 15, 30, 2003.
66. Zhu D., Bin Y., Matsuo M. J. Polym. Sci. Pol. Phys. 45, 1037, 2007.
67. Bryning M. B., Islam M. F., Kikkawa J. M., Yodth A. G. Adv. Mater. 17, 1186, 2005.
68. Benoit J., Corraze B., Chauvet O. Phys. Rev. B 65, 241405R, 2002.
69. .Sandler J. K. W., Kirk J. E., Kinloch I. A., Shaffer M. S. P., Windle A. H. Polymer 44, 5893, 2003.
70. Cochet M., Maser W. K., Benito A. M., Callejas M. A., Martinez M. T., Benoit J. M., Schreiber J., Chauvet O. Chem. Commun. 1450, 2001.
71. Grossiord N., Miltner H. E., Loos J., Meuldijk J., Mele B. V., Koning C. E. Chem. Mater. 19, 3787, 2007.
72. Park K. Y., Lee S. E., Kim C. G., Han J. H. Compos. Struct. 81, 401, 2007.
73. Williams Q. L., Liu X., Walters W., Zhou J. G., Edwards T. Y., Smith F. L., Williams G. E., Mosely B. L. Appl. Phys. Lett. 91, 143116, 2007.
74. Klosterman D., Li L., Morrris J. E. IEEE Transactions on Components, Packing and Manufacturing Technology A 21, 23, 1998.
75. Basaanhally N. R., Chang D. D., Cranston B. H., Seger S. G. Proceedings of 42nd IEEE Electronic Components and Technology Conference (ECTC) San Diego.
76. 黃淑禎, 液晶顯示器(LCD)構裝用導電膠材料技術與應用, 工業材料, 155, 159, 1999.
77. Kristiansen H., Liu J. IEEE Transactions on Components, Packing, and Manufacturing Technology-Part A 21, 208, 1998.
78. Yim M. J. IEEE Transactions on Components, Packing, and Manufacturing Technology-Part A 21, 226, 1998.
79. Oquibe C. N., Mannan S. H., Whalley D. C., Willams D. J. IEEE Transactions on Components, Packing, and Manufacturing Technology-Part A 21, 235, 1998.
80. Shi F. G., Abdullah M., Chung S., Okuyama K., Davidson C., Adams J. M. Materials Science in Semiconductor Proceeding 2, 263, 1999.
81. Decker C., Zahouily K., Decker D., Nquyen T., Viet T. Polymer 42, 7551, 2001.
82. Ordian G. “Principles of Polymerization” John Wiley & Sons Inc., New York, 1991.
83. Bolger J. C., Morar S. L. Adhesives Age 27, 17, 1984.
84. Jose J., Khadar M. A. Acta Materials. 49, 729, 2001.
85. 路慶華、和田宏, 新型導電膠的研究I, 功能材料, 28, 546, 1997.
86. Ye L., Lai Z., Liu J. IEEE Transactions on Electronics Packing Manufacturing 22, 1999.
87. Andrews C., Jacques D., Minot M., Rantell T. Macromol. Mater. Eng. 287, 395, 2002.
88. Vaccarini L., Desarmot G., Almairac R., Tahir S., Goze C., Bernier P. AIP Conf. Proc. N. 544, 521, 2000.
89. NcNally T., Potschke P., Halley P., Murphy M., Martin D., Bell S. E.J., Brennan G. P., Bein D., Lemoine P., Quinn J. P. Polymer 46, 8222, 2005.
90. Andrews R., Jacques D., Qian D., Rantell T. Acc. Chem. Res. 35, 1008, 2002.
91. Gong X., Liu J., Baskaran S., Voise R. D., Young J. S. Chem Mater. 12, 1049, 2000.
92. Chen J., Liu H., Weimer W. A., Halls M. D., Waldeck D. H., Walker G. C. J. Am. Chem. Soc. 124, 9034, 2002.
93. Ramasubramaniam R., Chen J., Liu H. Appl. Phys. Lett. 83, 2928, 2003.
94. Velasco-Santos C., Martinez-Hernandez A. L., Fisher F. T., Ruoff R., Castano V. M. Chem Mater. 15, 4470, 2003.
95. Tang B. Z., Xu H. Macromolecules 32, 2569, 1999.
96. Park C., Ounaies Z.,Watson K. A., Crooks R. E., Smith J. Jr., Lowther S. E., Connell J. W., Siochi E. J., Harrison J. S., Clair T. L. St. Chem. Phys. Lett. 364, 303, 2002
97. Long Y., Chen Z., Zhang X., Zhang J., Liu Z. J. Phys. D: Appl. Phys. 37, 1965, 2004.
98. Zhu J., Kim J. D., Peng H., Margrave J. L., Khabashesku V. N., Barrera E. V. Nano Lett. 3, 1107, 2003.
99. Sung J. H., Kim H. S., Jin H. J., Choi H. J.,Chin I. J. Macromolecules 37, 9899, 2004.
100. Zhu J., Peng H. Rodriguez-Macias F., Margrave J. L., Khabashesku V. N., Imam A. M., Lozano K., Barrera E. V. Adv. Func. Mater. 14, 643, 2004.
101. Kim Y. J., Shin T. S., Choi H. D., Kwon J. H., Chung Y. C., Yoon H. G. Carbon 43, 23, 2005.
102. Zhang N., Xie J., Guers M., Varadan V. K. Smart Mater. Struct. 13, N1, 2004.
103. Liu M., Yang Y., Zhu T., Liu Z. Carbon 43, 1470, 2005.
104. Guo J., Li Y., Wu S., Li W. Nanotechnology 16, 2385, 2005.
105. Chen Q., Dai L., Gao M., Huang S., Mau A. J. Phys. Chem. B, 105, 618, 2001.
106. Khare B. N., Wilhite P., Meyyappan M. Nanotechnology, 15, 1650, 2004.
107. Felten A., Bittencourt C., Pireaux J. J., Van Lier G., Charlier J. C. J. Appl. Phys. 98, 074308, 2005.
108. Monthioux M., Smith B. W., Burteaux B., Claye E., Fischer J. E., Luzzi D. E., Carbon 39, 1251, 2001.
109. Park S. J., Cho M. S., Lim S. T., Choi H. J., John M. S. Macromol. Rapid. Commun. 24, 1070, 2003.
110. Grossiord N., Loos J., Regev O., Koning C. E. Chem. Mater. 18, 1089, 2006.
111. Hu H., Yu A., Kim E., Zhao B., Itkis M. E., Bekyarova E., Haddon R. C. J. Phys. Chem. B 109, 11520, 2005.
112. Calvert, P. Nature 399, 210, 1999.
113. Wagner H. D., Lourie O., Feldman Y., Tenne R. Appl. Phys. Lett. 72 188, 1998.
114. 賴耿陽, 環氧樹脂應用實務, 復漢出版社, 1992.
115. 何漢宗、王春山, 低應力半導體封裝用環氧樹脂之研究.
116. Okpalugo T. I. T., Papakonstantinou P., Murphy H., Mclaughlin J., Brown N. M. D. Carbon 43, 153, 2005.
117. Urszula D. W., Viera S., Ralf G., Sung H. J., Byung H. K., Hyun J. L., Lothar L., Yung W. P., Savas B., David T., Siegmar R. J. Am. Chem. Soc. 127, 5125, 2005.
118. Lee W. H., Kim S. J., Lee W. J., Lee J. G., Haddon R. C., Reucroft P. J. Appl. Surf. Sci. 181, 121, 2001.
119. Ago H., Kugler T., Cacialli F., Salaneck W. R., Shaffer M. S. P., Windle A. H., Friend R. H. J. Phys. Chem. B 103, 8116, 1999.
120. Urszula D. W. et al. J. Am. Chem. Soc. 127, 5125, 2005.
121. Martinez M. T.et al. Carbon 41, 2247, 2003.
122. Beruer O., Sundararaj U. Polym. Composite 25, 630, 2004.
123. Fujiwara M., Oki E., Hamada M., Tanimoto Y., Mukouda I.,Shimomura Y. J. Phys. Chem. A 105, 4383, 2001.
124. Walters D. A. et al. Chem. Phys. Lett. 338, 14, 2001.
125. Kimura T., Ago H., Tobita M., Oshima S., Kyotani M., Yumura M. Adv. Mater. 14, 1380, 2002.
126. Kimura T. Polym. J. 35, 823, 2003.
127. Jeffery G. B. Proc. R. Soc. London, Ser. A. 102, 161, 1992.
128. Perrin F. J. Phys. Radium. 5, 497, 1934.
129. Kirkpatrick S. Rev. Mod. Phys. 45, 574, 1973.
130. Stauffer D., Introduction to Percolation Theory, Taylor & Francis, London, 1987, p. 89.
131. Halperin B. I., Feng S., Sen P. N. Phys. Rev. Lett. 54, 2391, 1985.
132. Vionnet-Menot S., Grimaldi C., Maeder T., Strässler S., Ryser1 P. Phys. Rev. B 71, 064201, 2005.
133. Dubson M. A., Garland J. C. Phys. Rev. B 32, 7621, 1985.
134. Reghu M., Yoon C. O., Yang C. Y., Moses D., Smith P., Heeger A. J. Phys. Rev. B 50, 13931, 1994.
135. Sheng P., Sichel E. K., Gittleman J. I. Phys. Rev. Lett. 40, 1197, 1978.
136. Sichel E. K., Gittleman J. I., Sheng P., In Carbon Black Polymer Composites, Dekker, New York, 1982, Chap. 2, p. 52.
137. Connor M. T., Roy S., Ezquerra T. A., Calleja F. J. B. Phys. Rev. B 57, 2286, 1998.
138. Kim Y. J., Shin T. S, Choi H. D., Kown J. H., Chung Y. C., Yoon H. G. Carbon 43, 23, 2005.
139. Shi S. L., Liang J. J. Appl. Phys. 101, 023708, 2007.
140. Lisunova M. O., Mamunya Ye. P., Lebovka N. I., Melezhyk A. V. Eur. Polym. J. 43, 949, 2007.
141. Rul S., Lefevre-schlick F., Capria E., Laurent Ch., Peigney A. Acta. Mater. 52, 1061, 2004.
142. Shekhar S., Prasad V., Subramanyam S. V. Carbon 44, 334, 2006.
143. Balberg I. Phys. Rev. Lett. 59, 1305, 1987.
144. Lee S. I., Song Y., Noh T. W., Chen X. D., Gaines J. R. Phys. Rev. B 34, 6719, 1986.
145. Heaney M. B. Phys. Rev. B 52, 12477, 1995.
146. Vionnet-Menot S., Grimaldi C., Maeder T., Strassler S., Ryser P. Phys. Rev. B 71, 064201, 2005.
147. Bendiab N., Anglarent E., Bantignies J. L. Phys. Rev. B 64, 245424, 2001.
148. Jishi R. A., Venkataraman L., Dresselhaus M. S., Dresselhaus G. Chem. Phys. Lett. 209, 77, 1993.
149. 成會明、張勁燕, 奈米碳管, 五南書局.
150. Derek A. L., The raman Effect: A Unified Treatment of the Theory of Raman Scattering by Molecules.
151. Jorio A., Pimenta M. A., Souza Filho A. G., Saito R., Dresselhaus G., Dresselhaus M. S. New J. Phys. 5, 1391, 2003.
152. Wu T. M., Lin Y. W., Liao C. S. Carbon 43, 734, 2005.
153. Huang B. R., Huang C. S., Hsieh C. F., Liu Y. F. Diam. Relat. Mater. 13, 2131, 2004.
154. Chao G. et al. J. Phys. Chem. B 109, 11925, 2005.
155. Ries H. E. Nature 226, 72, 1970.
156. Linqin J., Lian G., Jing S. J. Colloid Interface Sci. 260, 89, 2003.
157. Ramanathan T., Fisher F. T., Ruoff R. S., Brinson L. C. Chem. Mater. 17, 1290, 2005.
158. Nanda J., Kuruvilla B. A., Sarma D. D. Phys. Rev. B 59, 7473, 1999.
159. Hallock A. J., Brus L. E. Nano Letters 5, 131, 2005.
160. Feng Y. G., Wang X., Li T. C. Zhang J. Y., Qian D. J. Langmuir 23, 5296, 2007.
161. Jin R., Cao Y., Mirkin C. A., Kelly K. L., Schatz G. C., Zheng J. G. Science 294, 1901, 2001.
162. Callegari A., Tonti D., Chergui M. Nano Lett. 3, 1565, 2003.
163. Sun Y., Yin Y., Mayers B. T., Herricks T., Xia Y. Chem. Mater. 14, 4736, 2002.
164. Gao Y. et al. J. Phys. D: Appl. Phys. 38, 1061, 2005.
165. Liu Y. C., Lin L. H. Electrochem. Commun. 6, 1163, 2004.
166. Adalberto Z. et al. Small 2, 346, 2006.
167. Gelves G. A., Lin B., Sundararaj U., Haber J. A. Adv. Funct. Mater. 16, 2423, 2006.
168. Kaushik V. K. J. Electron Spectrosc. 56, 273, 1991.