| 研究生: |
王亦宸 Wang, Yi-Chen |
|---|---|
| 論文名稱: |
高折射係數Bound States in the Continuum奈米共振腔的有限陣列尺寸效應 Finite Array Size Effect of High Index Dielectric Bound States in the Continuum |
| 指導教授: |
劉瑞農
Liu, Jui-Nung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 38 |
| 中文關鍵詞: | 奈米共振腔 、微共振腔 、有限陣列效應 、Bound states in the continuum (BIC) |
| 外文關鍵詞: | nano-cavity, micro-cavity, Finite-size effects, Bound states in the continuum(BIC) |
| 相關次數: | 點閱:86 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
微共振腔因為具有將光侷限在波長尺度模態體積的能力,因此可促進其內的光與物質交互作用。Bound states in the continuum (BIC) 因其理論上可達到極高的共振腔品質因子(Q-factor),成為光子學領域最近受到關注的研究議題。對於光學器件應用上,提供了新穎的選擇,但在大多數的文獻中,對於BIC結構的討論與研究,多是假設無窮週期結構的前提。然而,實際應用層面希望在有限的週期內,達到與無窮週期結構接近的共振效果,因此結構微小化與探討有限週期結構是必須的。本論文運用COMSOL與FDTD進行數值電磁學模擬,研究BIC結構分別在無窮陣列與有限陣列中的光學響應,並探討有限陣列造成的影響。
Micro-cavity has the ability to confine light in wavelength-scale modal volume, it can promote the interaction of light and matter in cavity. Bound states in the continuum (BIC) become a research topic in the field of photonics recently because of its theoretically high Q-factor. For application of optical devices, BIC provided novel choice, but in most of the paper, the discussion and research on the BIC structure are mostly the premise of assuming an infinite periodic structure. However, the practical application hope to achieve a resonance effect close to the infinite period structure within a finite period. Therefore, the miniaturization of the structure and the discussion of the finite period structure are necessary. In this thesis, we use COMSOL and FDTD simulation, to study how BIC optical response in finite array and infinite array, and also discuss how Finite-size effects influence.
Key words: nano-cavity, micro-cavity, Finite-size effects, Bound states in the continuum (BIC).
[1] P. Berini and I. De Leon, "Surface plasmon–polariton amplifiers and lasers,"
Nature photonics, vol. 6, pp. 16-24, 2012.
[2] C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles: John Wiley & Sons, 2008.
[3] S. Link and M. A. El-Sayed, "Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods," The Journal of Physical Chemistry B, vol. 103, pp. 8410-8426, 1999.
[4] C. Voisin, N. Del Fatti, D. Christofilos, and F. Vallée, "Ultrafast electron dynamics and optical nonlinearities in metal nanoparticles," The Journal of Physical Chemistry B, vol. 105, pp. 2264-2280, 2001.
[5] C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, et al., "Drastic reduction of plasmon damping in gold nanorods," Physical review letters, vol. 88, p. 077402, 2002.
[6] W. Zhou and T. W. Odom, "Tunable subradiant lattice plasmons by out-of-plane dipolar interactions," Nature nanotechnology, vol. 6, pp. 423-427, 2011.
[7] R. De La Rica and M. M. Stevens, "Plasmonic ELISA for the ultrasensitive
detection of disease biomarkers with the naked eye," Nature nanotechnology,
vol. 7, pp. 821-824, 2012.
[8] G. Grinblat, M. Rahmani, E. Cortés, M. Caldarola, D. Comedi, S. A. Maier, et al., "High-efficiency second harmonic generation from a single hybrid ZnO nanowire/Au plasmonic nano-oligomer," Nano letters, vol. 14, pp. 6660-6665, 2014.
[9] U. Zywietz, A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, "Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses," Nature communications, vol. 5, pp. 1-7, 2014.
[10] Y. Kivshar and A. Miroshnichenko, "Meta-optics with Mie resonances," Optics and Photonics News, vol. 28, pp. 24-31, 2017.
[11] M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, et al., "Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion," Nature communications, vol. 6, pp. 1-8, 2015.
[12] H.-T. Chen, A. J. Taylor, and N. Yu, "A review of metasurfaces: physics and applications," Reports on progress in physics, vol. 79, p. 076401, 2016.
[13] D. R. Smith, W. J. Padilla, D. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Physical review letters, vol. 84, p. 4184, 2000.
[14] C. M. Soukoulis and M. Wegener, "Past achievements and future challenges in the development of three-dimensional photonic metamaterials," Nature photonics, vol. 5, pp. 523-530, 2011.
[15] C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O'Hara, J. Booth, and D. R.
Smith, "An overview of the theory and applications of metasurfaces: The two-
dimensional equivalents of metamaterials," IEEE Antennas and Propagation
Magazine, vol. 54, pp. 10-35, 2012.
[16] B. Luk'yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, et al., "The Fano resonance in plasmonic nanostructures and metamaterials," Nature materials, vol. 9, pp. 707-715, 2010.
[17] D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, "Dielectric gradient metasurface optical elements," science, vol. 345, pp. 298-302, 2014.
[18] N. I. Zheludev, S. Prosvirnin, N. Papasimakis, and V. Fedotov, "Lasing spaser," Nature photonics, vol. 2, pp. 351-354, 2008.
[19] C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, et al., "Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers," Nature materials, vol. 11, pp. 69-75, 2012.
[20] C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, et al., "Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances," Nature communications, vol. 5, pp. 1-9, 2014.
[21] C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, "Bound states in the continuum," Nature Reviews Materials, vol. 1, pp. 1-13, 2016.
[22] K. Koshelev, A. Bogdanov, and Y. Kivshar, "Engineering with bound states in the continuum," Optics and Photonics News, vol. 31, pp. 38-45, 2020.
[23] K. Koshelev, S. Lepeshov, M. Liu, A. Bogdanov, and Y. Kivshar, "Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum," Physical review letters, vol. 121, p. 193903, 2018.
[24] A. Tittl, A. Leitis, M. Liu, F. Yesilkoy, D.-Y. Choi, D. N. Neshev, et al., "Imaging-based molecular barcoding with pixelated dielectric metasurfaces," Science, vol. 360, pp. 1105-1109, 2018.
[25] P. P. Vabishchevich, S. Liu, M. B. Sinclair, G. A. Keeler, G. M. Peake, and I. Brener, "Enhanced second-harmonic generation using broken symmetry III–V semiconductor fano metasurfaces," Acs Photonics, vol. 5, pp. 1685-1690, 2018.
[26] F. Zhang, X. Huang, Q. Zhao, L. Chen, Y. Wang, Q. Li, et al., "Fano resonance of an asymmetric dielectric wire pair," Applied Physics Letters, vol. 105, p. 172901, 2014.
[27] K. Koshelev, Y. Tang, K. Li, D.-Y. Choi, G. Li, and Y. Kivshar, "Nonlinear metasurfaces governed by bound states in the continuum," ACS Photonics, vol. 6, pp. 1639-1644, 2019.
[28] N. Bernhardt, K. Koshelev, S. J. White, K. W. C. Meng, J. E. Froch, S. Kim, et al., "Quasi-BIC resonant enhancement of second-harmonic generation in WS2 monolayers," Nano Letters, vol. 20, pp. 5309-5314, 2020.
[29] V. R. Tuz, V. V. Khardikov, A. S. Kupriianov, K. L. Domina, S. Xu, H. Wang, et al., "High-quality trapped modes in all-dielectric metamaterials," Optics express, vol. 26, pp. 2905-2916, 2018.
[30] K. Koshelev, A. Bogdanov, and Y. Kivshar, "Meta-optics and bound states in the continuum," Science Bulletin, vol. 64, pp. 836-842, 2019.
[31] S. Campione, S. Liu, L. I. Basilio, L. K. Warne, W. L. Langston, T. S. Luk, et al., "Broken symmetry dielectric resonators for high quality factor Fano metasurfaces," Acs Photonics, vol. 3, pp. 2362-2367, 2016.
[32] M. S. Bin-Alam, O. Reshef, Y. Mamchur, M. Z. Alam, G. Carlow, J. Upham, et al., "Ultra-high-Q resonances in plasmonic metasurfaces," Nature communications, vol. 12, pp. 1-8, 2021.
[33] A. S. Kostyukov, I. L. Rasskazov, V. S. Gerasimov, S. P. Polyutov, S. V. Karpov, and A. E. Ershov, "Multipolar lattice resonances in plasmonic finite-size metasurfaces," in Photonics, 2021, p. 109.
[34] R. Savelev, D. Kornovan, Y. Kivshar, and M. Petrov, "High-Q localized states in finite extent arrays of Mie resonators," in CLEO: QELS_Fundamental Science, 2021, p. FTh4I. 2.
[35] S. Droulias, T. Koschny, and C. M. Soukoulis, "Finite-size effects in metasurface lasers based on resonant dark states," ACS photonics, vol. 5, pp. 3788-3793, 2018.
[36] L. Zundel and A. Manjavacas, "Finite-size effects on periodic arrays of
nanostructures," Journal of Physics: Photonics, vol. 1, p. 015004, 2018.
[37] Z. Liu, Y. Xu, Y. Lin, J. Xiang, T. Feng, Q. Cao, et al., "High-Q quasibound states in the continuum for nonlinear metasurfaces," Physical review letters, vol. 123, p. 253901, 2019.
[38] COMSOL Multiphysics. https://www.comsol.com
[39] Lumerical FDTD Solution. https://www.lumerical.com