| 研究生: |
陳彥融 Chen, Yen-Jung |
|---|---|
| 論文名稱: |
矽晶型太陽能電池模組資源循環之研究 Circulation of valuable materials from Waste Crystalline-silicon Photovoltaic modules |
| 指導教授: |
陳偉聖
Chen, Wei-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 116 |
| 中文關鍵詞: | 矽晶型太陽能模組 、鍍錫銅帶 、酸溶浸漬 、溶媒萃取 、資源再生 |
| 外文關鍵詞: | End-of-life PV module, PV cell, PV ribbon, Hydrometallurgy, Recycling |
| 相關次數: | 點閱:83 下載:29 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究針對矽晶型太陽能模組進行資源再生研究,研究主軸分為四大部分,第一部分為太陽能模組前處理,將太陽能模組鋼化玻璃與背板分離後,以500°C熱處理,將聚乙烯醋酸乙烯酯(EVA)去除,蒐集矽晶型太陽能電池片(PV cell)與鍍錫銅帶(PV Ribbon)。
第二部分為矽晶型太陽能電池片雜質去除與純化研究,藉由對電池片特性分析結果規劃後續研究流程,並以5M硝酸與1M氫氧化鉀進行浸漬流程,對於電池片表層銀、鋁浸漬效率達99.4%與98.9%,並得到純度99.84%矽資源。
第三部分為鍍錫銅帶金屬溶出與分離純化研究,藉由對鍍錫銅帶特性分析後,以3M鹽酸將鍍錫銅帶直接酸溶浸漬與鍍層先行分離兩種方式處理,直接浸漬可將銀金屬先行分離,並以溶媒萃取技術分選其餘浸漬後的金屬離子。利用鍍層先行分離技術可直接將鍍錫銅帶內金屬銅與鉛、錫鍍層分離回收,得純度99.5%以上之金屬銅,鍍層則會以直接浸漬最佳參數浸漬溶出,接續溶媒萃取技術分選金屬離子。溶媒萃取流程中使用TBP進行第一階段萃取分離,將錫離子萃取至油相,銅、鉛離子留在萃餘液中,再利用硝酸做為反萃劑,將錫離子反萃取回水相。銅、鉛離子則是利用LIX984N進行第二階段萃取分離,將銅離子萃取至油相,鉛離子留在萃餘液中,再利用硫酸做為反萃劑,將銅離子反萃取回水相。
第四部份為矽晶型太陽能電池片和鍍錫銅帶金屬產物析出研究,將銀、銅、錫、鉛離子利用化學沉澱結晶法,加入氯化鈉及氫氧化氨進行沉澱反應,得到氧化銀與其他金屬氫氧化物,再利用還原法與煅燒法得到金屬銀、氧化銅、氧化錫與氧化鉛產物,其純度分別為98.85%、99.7%、99.68%、99.47%。
With the rapid increase of PV module installation, the methods for recovering waste solar generators should be studied as the backup of the PV market. This study provided a valuable materials resource circulation process from waste crystalline silicon PV module. The process was divided into four groups to effectively recycle PV module, including pretreatment, PV cell purification, PV ribbon metals separation, and metals purification. In pretreatment part, tempered glass and back sheets were removed from PV module by organic solvent. After removing tempered glass, PV module was heating to 500°C to eliminate EVA resin on the surface of the module. The module was separated into two materials, PV ribbon and PV cell. In PV cell purification part, two-step leaching was employed to dissolve the impurity such as Al, Ag in PV cell. After the process, the purity of silicon was 99.84%. In PV ribbon metals separation process, leaching and polishing were both studied and compared. The agent with Cu, Pb, Sn ions after leaching was separated through the extraction process. In the final metal purification step, CuO, PbO, SnO2 were obtained by chemical precipitation and calcination. Ag was obtained by precipitation and chemical reduction. The purity of CuO, PbO, SnO2 and Ag are over 99%.
[1] IRENA (2020), Renewable capacity statistics 2020 International Renewable Energy Agency (IRENA), Abu Dhabi.
[2]台灣電力公司,歷年再生裝置容量(97-108),2020。
[3] Paiano, A. Photovoltaic waste assessment in Italy. Renewable Sustainable Energy Rev. 41, 99−112, 2015.
[4] Fraunhofer Institute for Solar Energy Systems (ISE), Photovoltaic report, 2020.
[5] S.Weckend, A.Wade, and G.Heath, End-of-life management: Solar photovoltaic panels. 2016.
[6] T. Doi, I. Tsuda, H.Unagida, A.Murata, K.Sakuta, and K.Kurokawa, “Experimental study on PV module recycling with organic solvent method,” Sol. Energy Mater. Sol. Cells, vol. 67, no. 1–4, pp. 397–403, 2001.
[7] Park J, Kim W, Cho N, Lee H, Park N. An eco-friendly method for reclaimed silicon wafers from a photovoltaic module: from separation to cell fabrication. Green Chemistry. 18(6):1706-1714, 2016.
[8] Yousef S, Tatariants M, Denafas J, Makarevicius V, Lukošiūtė S, Kruopienė J. Sustainable industrial technology for recovery of Al nanocrystals, Si micro-particles and Ag from solar cell wafer production waste. Solar Energy Materials and Solar Cells. 191:493-501, 2019.
[9] Yi Y, Kim H, Tran T, Hong S, Kim M. Recovering valuable metals from recycled photovoltaic modules. J Air Waste Manage Assoc. 64(7):797-807, 2014.
[10] Fiandra V, Sannino L, Andreozzi C, Corcelli F, Graditi G. Silicon photovoltaic modules at end-of-life: Removal of polymeric layers and separation of materials. Waste Management. 87:97-107, 2019.
[11] Klugmann-Radziemska E, Ostrowski P, Drabczyk K, Panek P, Szkodo M. Experimental validation of crystalline silicon solar cells recycling by thermal and chemical methods. Solar Energy Materials and Solar Cells. 94(12):2275-2282, 2010.
[12] Kang S, Yoo S, Lee J, Boo B, Ryu H. Experimental investigations for recycling of silicon and glass from waste photovoltaic modules. Renew Energy. 47:152-159, 2012.
[13] Ewa RADZIEMSKA1, Piotr OSTROWSKI, Adam CENIAN and Mirosław SAWCZAK. Chemical, thermal and laser processes in recycling of photovoltaic silicon solar cells and modules. Ecological chemistry and engineering, Vol. 17, No. 3, 2010.
[14] Park J, Park N. Wet etching processes for recycling crystalline silicon solar cells from end-of-life photovoltaic modules. RSC Adv. 2014;4(66):34823-34829.
[15] Deng R, Chang N, Ouyang Z, Chong C. A techno-economic review of silicon photovoltaic module recycling. Renewable and Sustainable Energy Reviews. 109:532-550, 2019.
[16] Lee J-K, Lee J-S, Ahn Y-S, Kang G-H, Song H-E, Kang M-G, et al. Simple pretreatment processes for successful reclamation and remanufacturing of crystalline silicon solar cells. Prog Photovoltaics Res Appl 26:179–87, 2018.
[17] Lee J, Ahn Y, Kang G, Wang J. Recovery of 4N-grade copper from photovoltaic ribbon in spent solar module. Materials Technology. 31(10):574-579 , 2016.
[18] Jung B, Park J, Seo D, Park N. Sustainable system for raw-metal recovery from crystalline silicon solar panels: from noble-metal extraction to lead removal. ACS Sustainable Chem Eng. 4:4079-4083, 2016.
[19] G.H. Moon, and K.K. Yoo, 2017: Separation of Cu, Sn, Pb from photovoltaic ribbon by hydrochloric acid leaching with stannic ion followed by solvent extraction, Hydrometallurgy 171, p.123-127, 2017.
[20] Williams R. Becquerel Photovoltaic Effect in Binary Compounds. J Chem Phys. 1960;32(5):1505-1514, 1960.
[21] 溫子逵,”電子光斑干涉術應用於矽晶太陽能電池之裂縫檢測”,博士論文,國立交通大學,2012。
[22] 林明獻,太陽能電池技術入門(修訂版),全華圖書股份有限公司,2009。
[23] 林明獻,矽晶圓半導體材料技術(修訂版),全華圖書股份有限公司,2007。
[24] 黃惠良,蕭錫鍊,周明奇,林堅楊,江雨龍,曾百亨,李威儀,李世昌,林唯芳,太陽電池 solar cells,五南圖書出版公司,2008。
[25] 梁碧峯,綠色化學概論,高麗圖書出版社,2011。
[26] Meija, J., Coplen, T. B., Berglund, M., Brand, W. A., De Bièvre, P., Gröning, M., Holden, N. E., Irrgeher, J., Loss, R. D., Walczyk, T., & Prohaska, T. (2016). Atomic weights of the elements 2013 (IUPAC Technical Report), Pure and Applied Chemistry, 88(3), 265-291, 2013.
[27] 行政院環保署,矽-關鍵物料調查報告,2017。
[28] 蘇明德,矽的自述,科技大觀園,2019。
[29] U.S. Geological Survey, “Mineral Commodity Summaries 2020,”2020.
[30] U.S. Geological Survey, “Mineral Commodity Summaries 2019,”2019.
[31] U.S. Geological Survey, “Mineral Commodity Summaries 2018,”2018.
[32] U.S. Geological Survey, “Mineral Commodity Summaries 2017,”2017
[33] HIS Markit, ihsmarkit.com,2020
[34] Lumen Geology, Reading: Abundance of elements in Earth’s crust,2020。
[35] Hammond, C. R. The Elements, in Handbook of Chemistry and Physics 81st. CRC press. 2004.
[36] 陳偉聖、施冠宇,煉鉛集塵灰資材化技術,工業污染防治 第131期,p.97-114,2015。
[37] 崔克清.安全工程大辭典:化學工業出版社,1995年。
[38] 南條道夫, “都市鉱山開発―包括的資源観によるリサイクルシステムの位置付け”, 東北大學選鑛製錬研究所彙報, 43, 239-251, 1988.
[39] 茂迪股份有限公司,https://www.motech.com.tw/
[40] Granata G, Pagnanelli F, Moscardini E, Havlik T, Toro L. Recycling of photovoltaic panels by physical operations. Solar Energy Materials and Solar Cells. 123:239-248, 2014.
[41] Pagnanelli F, Moscardini E, Granata G et al. Physical and chemical treatment of end of life panels: An integrated automatic approach viable for different photovoltaic technologies. Waste Management. 59:422-431, 2017.
[42] Dassisti M, Florio G, Maddalena F. Cryogenic delamination: mathematical modeling and analysis of an innovative recycling process for photovoltaic crystalline modules. Journal of Remanufacturing. 10(1):43-56, 2019.
[43] Jia Z, Fang L. Review of Solar Photovoltaic System Recycling Technologies and Regulations in China. DEStech Transactions on Environment, Energy and Earth Science. 2016.
[44] Latunussa C, Ardente F, Blengini G, Mancini L. Life Cycle Assessment of an innovative recycling process for crystalline silicon photovoltaic panels. Solar Energy Materials and Solar Cells. 156:101-111, 2016.
[45] 吳耀杉,王雨筠,鄭隆藤,姜暭先,林福銘,日本太陽光電模組回收技術解析,工業材料雜誌381期,2018。
[46] Komoto K., Approaches to PV waste management in Japan. 32nd Eur. photovolt. sol. energy conf. 2016.
[47] Tomioka O., Japan tries to chip away at mountain of disused solar panels. Nikkei Asian Rev., 2016.
[48] De Wen Zeng, Manfred Born, Karsten Wambach, Pyrolysis of EVA and its application in recycling of photovoltaic modules. Journal of Environmental Sciences 16(6):889-93, 2004.
[49] Huang W, Shin W, Wang L, Sun W, Tao M. Strategy and technology to recycle wafer-silicon solar modules. Solar Energy. 144:22-31, 2017.
[50] Chang Y, Lee C, Popuri S et al. Recovery of silicon copper and aluminum from scrap silicon wafers by leaching and precipitation. Environ Eng Manag J. 17(3):561-568, 2018.
[51] Dias P, Javimczik S, Benevit M, Veit H. Recycling WEEE: Polymer characterization and pyrolysis study for waste of crystalline silicon photovoltaic modules. Waste Management. 60:716-722, 2017.
[52] Zhang L, Xu Z. Separating and Recycling Plastic, Glass, and Gallium from Waste Solar Cell Modules by Nitrogen Pyrolysis and Vacuum Decomposition. Environ Sci Technol. 50(17):9242-9250, 2016.
[53] Bruton, T. M., Scott, R. D. W. & Nagle, J. P. Recycling of high value, high energy content components of silicon PV modules. Proc. 12th Eur. Photovolt. Sol. Energy Conf. 459–463.
[54] Kang S, Yoo S, Lee J, Boo B, Ryu H. Experimental investigations for recycling of silicon and glass from waste photovoltaic modules. Renew Energy. 47:152-159, 2012.
[55] Doi T, Tsuda I, Unagida H, Murata A, Sakuta K, Kurokawa K. Experimental study on PV module recycling with organic solvent method. Solar Energy Materials and Solar Cells. 67(1-4):397-403, 2001.
[56]최용해, 이원기, Poly(vinyl acetate-co-ethylene)에멀젼 물성에 대한 가소제 효과, 공업화학, Vol. 20 Issue 4, p.459-463, 2009.
[57] Azeumo M, Germana C, Ippolito N, Franco M, Luigi P, Settimio S. Photovoltaic module recycling, a physical and a chemical recovery process. Solar Energy Materials and Solar Cells. 193:314-319, 2019.
[58] Tao J, Yu S. Review on feasible recycling pathways and technologies of solar photovoltaic modules. Solar Energy Materials and Solar Cells. 141:108-124, 2015.
[59] Klugmann-Radziemska E, Ostrowski P. Chemical treatment of crystalline silicon solar cells as a method of recovering pure silicon from photovoltaic modules. Renew Energy. 35(8):1751-1759, 2010.
[60] Teng-Yu Wang, Jui-Chung Hsiao, Chen-Hsun Du, Recycling of materials from silicon vase solar cell module, 38th IEEE Photovoltaic Specialists Conf., 2012.
[61] Frisson L, Lieten K, Bruton T, Declereq K, Szlufcik H, De Moor H, et al. Recent improvements in industrial PV module recycling. 16th Eur. Photovolt. Sol. Energy Conf. vol. 5, 2000.
[62] Park J, Park N. Wet etching processes for recycling crystalline silicon solar cells from end-of-life photovoltaic modules. RSC Adv. 4(66):34823-34829, 2014.
[63] Shin J, Park J, Park N. A method to recycle silicon wafer from end-of-life photovoltaic module and solar panels by using recycled silicon wafers. Solar Energy Materials and Solar Cells. 162:1-6, 2017.
[64] E. Bombach, I. Röver, A. Müller, S. Schlenker, K. Wambach, R. Kopecek, E. Wefringhaus, Technical experience during thermal and chemical recycling of a 23 year old PV generator formerly installed on pellworm island. 21st Eur. Photovlt. Sol. Energy Conf., 2006.
[65] Yousef S, Tatariants M, Denafas J, Makarevicius V, Lukošiūtė S, Kruopienė J. Sustainable industrial technology for recovery of Al nanocrystals, Si micro-particles and Ag from solar cell wafer production waste. Solar Energy Materials and Solar Cells. 191:493-501, 2019.
[66] Yi Y, Kim H, Tran T, Hong S, Kim M. Recovering valuable metals from recycled photovoltaic modules. J Air Waste Manage Assoc.64(7):797-807, 2014.
[67] Kim S, Lee J, Lee K, Yoo K, Alorro R. Separation of Tin, Silver and Copper from Waste Pb-free Solder Using Hydrochloric Acid Leaching with Hydrogen Peroxide. Materials Transactions. 55(12):1885-1889, 2014.
[68] 馬玖彤,李灤甯,張鳳君。銅精礦浸出液中銅鎳萃取的研究與應用,吉林大學學報(地),31(2):203-204,2001。
[69] 伍寶英,張煥然。氨性體系 Lix984 萃取分離銅鎳性能研究。山西冶金,39(5):9-12,2016。
[70] Lan Z, Hu Y, Liu J, Wang J. Solvent extraction of copper and zinc from bioleaching solutions with LIX984 and D2EHPA. Journal of Central South University of Technology. 12(1):45-49, 2005.
[71] Li L, Zhong H. Separation and Recovery of Copper (II), Nickel (II) from Simulated Plating Wastewater by Solvent Extraction Using Lix984. Adv Mat Res. 365:252-259, 2011.
[72] 鄭輝東,王碧玉,吳燕翔。LIX984對銅離子的絡合萃取,環境化學,28(5): 679-682,2009
[73] 吳小明,沈強華,陳雯。LIX984從高酸硝酸銅體系中萃取回收銅試驗研究,礦冶,24(4):60-64,2015。
[74] 趙劍波,王成彥,尹飛。含鋅、銅溶液萃取分離及鋅的回收研究,礦冶,23(5):35-38,2014。
[75] 佟琳琳,洪英,劉春明。含銅細菌浸出液萃取。東北大學學報(自然科學版),32(10):1456-1459,2011。
[76] Liu Q, Yu R, Qiu G, Fang Z, Chen A, Zhao Z. Optimization of separation processing of copper and iron of dump bioleaching solution by Lix 984N in Dexing Copper Mine. Transactions of Nonferrous Metals Society of China. 18(5):1258-1261, 2008.
[77] Xiao B, Jiang F, Yin S et al. Fast separation of Cu2+ and Ni2+ in sulfate solution by Lix984N extraction using a microchannel chip. Green Processing and Synthesis. 7(3):207-216, 2018.
[78] 賈寶瓊,古國,朱萍。Lix54-100 從印刷電路板蝕刻廢液中回收銅。環境污染治理技術與設備,2002(11):70-73。
[79] 李雪梅,蔣崇文,蘇愛鮮。N910萃取鹼性蝕刻廢液中Cu(Ⅱ)的工藝研究。應用化學,41(5):811-814,2012。
[80] 岳敏傑,劉定富,魏世洋。N910 萃取分離溶液中銅(Ⅱ)和鎳(II)的研究,貴州大學學報:自然科學版,28(2):47-49,2011。
[81] 陳曉東,唐維學,麥麗碧。N910 從氨性溶液中萃取銅的研究。材料研究與應用,1(2):143-146,2007。
[82] 王正達,馬魯銘,朱萍。N902 霧化萃取鹽酸介質中銅的機制研究。稀有金屬,30(4):484-489,2006。
[83] Sunita V. Bandekar, Solvent extraction separation of tin (IV) with 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (PC-88A), Talanta, 46, 1181-1186, 1998.
[84] Sato T, Kikuchi S. Liquid-liquid extraction of tin(IV) from hydrochloric acid solutions by di( 2-ethylhexyl) phosphoric acid. Hydrometallurgy. 20(1):97-108, 1988.
[85] Sargar B, Anuse M. Rapid Solvent Extraction of Tin(IV) with High Molecular Weight Amine from Hydrochloric Acid Solution. Journal of the Chinese Chemical Society. 50(4):841-848, 2003.
[86] Fuerstenau M, Wang G. Selective separation of tin from a chloride leach solution. Hydrometallurgy. 46(1-2):229-234, 1997.
[87] Gudorf M, Lazarova Z, Schügerl K. Removal of tin from metal-containing industrial dusts. Hydrometallurgy. 42(1):125-130, 1996.
[88] Ahn J, Lee J. Separation of Sn, Sb, Bi, As, Cu, Pb and Zn from Hydrochloric Acid Solution by Solvent Extraction Process Using TBP (tri-n-Butylphosphate) as an Extractant. Materials Transactions. 52(12):2228-2232, 2011.
[89] Nguyen T, Kumar B, Lee M. Selective recovery of Fe(III), Pd(II), Pt(IV), Rh(III) and Ce(III) from simulated leach liquors of spent automobile catalyst by solvent extraction and cementation. Korean Journal of Chemical Engineering. 33(9):2684-2690, 2016.
[90] Liu Xiao Rong, Qiu Guan Zhou, Hu Yue Hua, Effect of LIX984N on phase Disengagement and interface emulaification in copper solvent extraction, Mining and metallurgical engineering, vol.23(4), 60-63, 2003.
[91] Takeno, N. Atlas of Eh-pH diagrams Intercomparison of thermodynamic databases. National Institute of Advanced Industrial Science and Technology (2005).
[92] F. R. Carrillo-Pedroza, M. J. Soria-Aquilar, E. Salinas-Rodriguez, A. Martinez-Luevanos, T. E. Pecina-Trevino and A. Davalos-Sanchez. Oxidative Hydrometallurgy of Sulphide Minerals. Recent Researches In Metallurgical Engineering- From Extraction To Forming, 2012.
[93] Flett, D. Solvent extraction in hydrometallurgy: the role of organophosphorus extractants, Journal of organometallic Chemistry, 690(10), 2426-2438, 2005.
[94] B. Gupta, N. Mudhar and I. Singh, "Separations and Recovery of Indium and Gallium Using Bis(2,4,4-trimethylpentyl)phosphinic Acid (Cyanex 272)", Separation and Purification Technology, vol. 57, no. 2, pp. 294-303, 2007.
[95] Silem A, Boualia A, Mellah A. The effect of raw and sulfonated kerosene-type diluent on the solvent extraction of uranium and co-extractable impurities from solutions. Part 2. Industrial phosphoric acid. Hydrometallurgy. 24(1):11-17, 1990.
[96] Boualia A, Mellah A, Silem A. The effect of raw and sulfonated kerosene-type diluent on the solvent extraction of uranium and co-extractable impurities from solutions. Part 1. Uranyl nitrate solution. Hydrometallurgy. 24(1):1-9, 1990.
[97] Cynthia E.L. Latunussa, Fulvio Ardente, Gian Andrea Blengini, Lucia Mancini. Life cycle assesment of an innovative recycling process for crystalline silicon photovoltaic panels. Solar Energy Materials & Solar cells 156(2016), 101-111, 2016.
[98] Choi S, Yoo K, Alorro R. Hydrochloric acid leaching behavior of metals from non-magnetic fraction of Pb dross. Geosystem Engineering. 22(6):347-354, 2019.
[99] Dong Y.N., 2015: Determination of tin in copper ore and lead-Zinc ore by atomic fluorescence spectrometry with co-precipitation separation, Physical Testing and Chemical Analysis, p54-58, 2015.
[100] 張志堅、邵一信、何英礎、王唯科,溶劑萃取法脫硝及硝酸回收之研究,Journal of the Chinese institute of chemical engineers, Vol.11, pp.41-47, 1980
[101] Jianming Lu, David Dreisinger. Solvent extraction of copper from chloride solution I: Extraction isotherms, Hydrometallurgy 137, (2013), 13-17, 2013.
[102] Jianhui Wu, Bo Dong, Xianpeng Zhang, Lijue Wu, Tiwei Tang, Solvent Extraction of Cu from Acid leachign solution of Carrollite using Lix984N, Metallurgical Engineering, 5(1), 25-31, 2018