| 研究生: |
黃仁仕 Huang, Jen-Shih |
|---|---|
| 論文名稱: |
以逆算法預測於鰭管式熱交換器之圓管上的熱傳係數 Application of the Inverse Method to Estimate the Heat Transfer Coefficient on the Tube of Finned-Tube Heat Exchangers |
| 指導教授: |
陳寒濤
Chen, Han-Taw |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 109 |
| 中文關鍵詞: | 逆算法 、熱傳係數 |
| 外文關鍵詞: | heat transfer coefficient, inverse method |
| 相關次數: | 點閱:105 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主要是應用混合拉氏轉換法( Laplace transform method )和有限差分法( Finite-difference method )的數值方法,並配合最小平方法( Least-squares scheme )及溫度量測值來預測鰭管式熱交換器之圓管上的熱傳係數。
本文之混合逆向方法乃先利用拉氏轉換法處理系統的時間域,而後再以有限差分法處理空間域,因而可求得在拉氏轉換領域內的差分方程式,最後再以高斯消去法與數值逆拉氏轉換法求得圓柱表面上之溫度分佈。由於拉氏轉換法的應用,故可求得任一特定時間的溫度值,而不需要由初始時間慢慢地求解。在反算過程中以最小平方法來修正預測值直至計算溫度和量測溫度之相對誤差小於某一容許誤差,以求得準確的熱傳係數。本文以自行設計之實驗設備來量取實心圓柱與具鰭片之實心圓柱之圓柱表面上的溫度分佈。而後根據這些數據配合上述之混合逆向方法來估算圓柱表面上之熱傳係數,並探討風速與鰭片等因素對熱傳係數預測值之影響。
The present study applies the laplace transform method and the finite-difference method in conjunction with the least-squares scheme and temperature measurements to estimate the heat transfer coefficient on the tube of finned-tube heat exchangers.
In the hybrid inverse scheme of the present thesis, the laplace transform method is first applied to deal with the time domain and then the resulting differential equations are solved by using the finite-difference method. Finally, the temperature distribution on the cylinder can be obtained from the gauss elimination scheme and the numerical inversion scheme of the laplace transform. Due to the application of the laplace transform, the temperature value at any specific time can be determined without step-by-step computation from the initial time. In order to obtain a more accurate heat transfer coefficient, the least-squares scheme is applied to correct the predicted values until the relative error between the calculated temperature and the temperature measurements is less than a tolerant value. An experimental apparatus in this thesis is devised in order to measure the temperature on the surface of the cylinder. The heat transfer coefficients of the cylinder can be estimated by using this scheme. And we discussed how the predicted heat transfer coefficients are affected by velocity of win and fin.
1. H.R. Lee, T.S. Chen and B.F. Armaly, “Natural convection along slender
vertical cylinders with variable surface temperature,” J. Heat Transfer, vol.
110, pp. 103-108, 1988.
2. H.R. Nagendra, M.A. Tirunarayanan and A. Ramachandran, “Laminar free
convection from vertical cylinders with uniform heat flux,” J. heat Transfer,
vol. 92, pp. 191-194, 1970.
3. T. Fujii and H. Uehara, “Laminar natural convective heat transfer form the
outer surface of a vertical cylinder,” Int. J. Heat Transfer, vol. 13, pp.
607-615, 1970.
4. N.V. Shumakoy, “A method for the experimental study of the process of heating
a solid body,” Soviet Physics-Technical Physics (Translated by Institute of
Physics), vol. 2, pp. 771, 1957.
5. G.Tr. Stolz, “Numerical solution to an inverse problem of heat condition for
simple shapes,” ASME J. Heat Transfer, vol. 82, pp. 20-26, 1960.
6. J.V. Beck, “Calculation of surface heat flux from an integral temperature
history,” ASME J. Heat Transfer, 62-HT-46, 1962.
7. E.M. Sparrow, A. Haji-Sheikh and T.S. Lundgern, “The inverse problem in
transient heat conduction, “ J. Appl. Mech., vol. 86e, pp. 369-375, 1964.
8. J.V. Beck, “Surface heat flux determination using an integral method,” Nucl.
Eng. Des., J. vol. 7, pp. 170-178, 1968.
9. J.V. Beck, “Nonlinear estimation applied to the nonlinear inverse heat
conduction problem,” Int. J. Heat Mass Transfer, vol. 13, pp. 713-71, 1970.
10. O.M. Alifanov, “Solution of an inverse problem of heat conduction by
iteration method,” J. Eng. Phys., vol. 26, No. 4, pp. 471-476, 1974.
11. N.M. Alnajem and M.N. Özisik, “A direct analytical approach for solving
linear inverse heat conduction problems,” ASME J. Heat Transfer, vol. 107,
pp. 700-703, 1985.
12. E.P. Scott and J.V. Beck, “Analysis of order of the sequential regulation
solutions of heat conduction problem,” ASME J. Heat Transfer, vol. 111,
pp.218-224, 1989.
13. J.V. Beck and D.A. Murio, “Combined function specification regularization
procedure for solution of inverse heat conduction problem,” AIAA J., vol. 24,
No. 180-185, 1986.
14. C.H. Huang and M.N. Özisik, “Inverse problem of determining the unknown wall
heat flux in laminar flow through a parallel plate duct,” Numer. Heat
Transfer, Part A, vol. 21, pp. 55-70, 1992.
15. C.H. Huang and M.N. Özisik, “Inverse problem of determining the unknown
strength of an internal plate heat source,” J. Franklin Institute, vol. 329,
No. 4, pp. 751-764, 1992.
16. J.V. Beck, B. Litkouhi and C.R.St. Chair, “Efficient sequential solution of
nonlinear inverse heat conduction problem,” Numer. Heat Transfer, vol. 5, pp.
275-286, 1982.
17. R.G. Arledge and A. Haji-Sheikh, “A iterative approach to the solution of
inverse heat conduction problem,” Numer. Heat Transfer, vol. 1, pp. 365-376,
1978.
18. K.W. Woo and L.C. Chow, “Inverse heat conduction by direct inverse laplace
transform,” Numer. Heat Transfer, vol. 4, pp. 499-504, 1981.
19. M. Raynaud and J.V. Beck, “Methodology for comparison of inverse heat
conduction methods,” ASME J. Heat Transfer, vol. 110, pp. 30-37, 1988.
20. R.G. Hill, G.P. Mulholland and L.K. Matthews, “The application of the
Backus-Gilbert method to the inverse heat conduction problem in composite
meadia,” ASME Paper No. 82-HT-26, 1982.
21. I. Frank, “An application of least-squares method to the solution of the
inverse problem of heat conduction,” J. Heat Transfer, 85C, pp. 378-379,
1963.
22. G.P. Mulholland, B.P. Gupta and R.L. San Martin, “Inverse problem of heat
conduction in composite meadia,” ASME Paper No. 75-WA/HT-83, 1975.
23. L.I. Deverall and R.S. Channapragada, “An new integral equation for heat
flux in inverse heat conduction,” J. Heat Transfer, 88C, pp. 327-328, 1966.
24. O.R. Burggraf, “An exact solution of the inverse problem in heat conduction
theory and applications,” ASME J. Heat Transfer, vol. 84, pp. 373-382, 1964.
25. W.K. Yeung and T.T. Lam, “Second-order finite difference approximation for
inverse determination of thermal conductivity,” Int. J. Heat Mass Transfer,
vol. 39, No. 17, pp. 3685-3693, 1996.
26. B.R. Bass and L.J. Ott, “A finite elment formulation of the two-dimensional
inverse heat conduction problem,” Adv. Comput. Technol., vol. 2, pp. 238-248,
1980.
27. Y. Liu and D.A. Murio, “Numerical experiments in 2-D IHCP on bounded domains
part I: the ‘interio’ cube problem,” Computer Math. Appl, vol. 31, No. 1,
pp. 15-32, 1996.
28. H.T. Chen and J.Y. Lin, “Hybrid Laplace transform technique for non-linear
transient thermal problems,” Int. J. Heat Mass Transfer, vol. 34, pp.
1301-1308, 1991.
29. H.T. Chen and J.Y. Lin, “ Numerical analysis for hyperbolic heat
conduction,” Int. J. Heat Mass Transfer, vol. 36, pp. 2891-2898, 1993.
30. H.T. Chen and J.Y. Lin, “Analysis of two-dimensional hyperbolic heat
conduction problems,” Int. J. Heat Mass Transfer, vol. 37, pp. 153-164, 1994.
31. H.T. Chen and J.Y. Lin, “Application of the laplace transform to nonlinear
transient problems,” Appl. Math. Modeling, vol. 15, pp. 144-151, 1991.
32. H.T. Chen, S.Y. Lin and L.C. Fang, “Estimation of surface temperature in
two-dimensional inverse heat conduction problems,” Int. J. Heat Mass
Transfer, vol. 44, pp. 1455-1463, 2001.
33. H.T. Chen, S.Y. Peng, P.C. Yang and L.C. Fang, “Numerical method for
hyperbolic inverse heat conduction problems,” Int. Comm. Heat Mass Transfer,
vol. 28, pp. 847-856, 2001.
34. H.T. Chen, S.Y. Lin and L C. Fang, “Estimation of two-sided boundary
conditions for two-dimensional inverse heat conduction problems,” Int. J.
Heat Mass Transfer, vol. 45, pp. 15-23, 2002.
35. H.T. Chen, X.Y. Wu and Y.S. Hsiao, “Estimate of surface condition from the
theory of dynamic thermal stresses,” Int. J. Thermal Sciences, vol. 43, pp.
95-104, 2004.
36. J. P. Holman, “Heat transfer,” 8th ed., Inc. McGraw-Hill Book Company, pp.
411-412, 2000.