| 研究生: |
涂晉敏 Tu, Jin-Min |
|---|---|
| 論文名稱: |
應用創傷弧菌藍螢光蛋白於植物科學的研究 Application of a blue fluorescent protein from Vibrio vulnificus for plant research |
| 指導教授: |
張清俊
Chang, Ching-Chun |
| 共同指導教授: |
李瑞花
Lee, Ruey-Hua |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 熱帶植物科學研究所 Institute of Tropical Plant Sciences |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 藍螢光蛋白 、啟動子 、轉殖植物 |
| 外文關鍵詞: | Blue fluorescent proteins, Promoters, Transgenic plants |
| 相關次數: | 點閱:194 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
非生物發光性的創傷弧菌 (Vibrio vulnificus CKM-1) 含有一個NADPH依賴性的藍螢光蛋白基因。為進一步探討藍螢光蛋白基因在植物科學研究中的應用,本研究利用三個不同啟動子,RbcS、Adh與DR5,分別調控藍螢光蛋白基因在不同組織與環境刺激因子下的表現,並將藍螢光蛋白累積於不同的細胞位置,例如細胞質、胞外、內質網、葉綠體與粒線體等。受RbcS與DR5啟動子調控的藍螢光蛋白暫時性表現之菸草葉片,在細胞質、胞外、內質網可觀察到藍螢光訊號,但在葉綠體與粒線體的藍螢光訊號則較微弱。受Adh與DR5啟動子調控的藍螢光蛋白暫時性表現之蝴蝶蘭花瓣,經H2O2與NAA處理後,藍螢光蛋白在細胞質與胞外的訊號較強,但在其他胞器的訊號則較微弱。若將藍螢光蛋白與家禽里奧病毒的鞘蛋白C端序列重組,發現重組蛋白的mRNA表現量較多,藍螢光也較強。含有藍螢光蛋白基因的轉殖阿拉伯芥,受Adh 啟動子調控的mBFP送至細胞質或胞外,在缺氧處理下,根部有較強的藍螢光訊號。在掃描式共軛焦顯微鏡下觀察阿拉伯芥轉殖株的原生質體,在細胞質、內質網與葉綠體可觀察到藍螢光訊號,其中葉綠體自發性螢光可與藍螢光座落於同一位置;但受RbcS啟動子調控mBFP送至粒線體的轉殖阿拉伯芥,其藍螢光蛋白訊號並未與粒線體重疊。 此一來自創傷弧菌的藍螢光蛋白可做為報導基因應用於植物學的研究。然而若能進一步修正mBFP的序列,將會更適合應用於植物科學與科技的研究。
The BFPvv, a NADPH-dependent blue fluorescent protein, was identified from non-bioluminescent pathogenic bacteria, Vibrio vulnificus CKM-1. The BFPvvD9 (mBFP) is a version of BFPvv which the fluorescent intensity was greatly improved by random mutagenesis and DNA shuffling technology. To explore the possibility for the application of mBFP in plants, plant nuclear expression vectors were constructed which the expression of mBFP gene was drived by three different promoters, e.g. tissue-specific(RbcS), hypoxia(Adh) or auxin(DR5) inducible promoters, respectively. In addition, the mBFP protein was targeted to different cellular compartments such as cytosol, extra-cellular matrix, ER, chloroplast and mitochondria. When the mBFP gene drived by RbcS or DR5 promoters was transiently expressed and proteins were targeted to cytosol, extracellular matrix, chloroplast or mitochondria in the tobacco leaves by Agro-infiltration, the blue fluorescence could be observed under fluorescent microscope. Although the mBFP gene driven by Adh or DR5 promoters was transiently inducible with 1 mM H2O2 or 50 μM NAA, respectively, for 24 hr in the flower of moth orchid, the intensity of blue fluorescence is relatively weak. When the mBFP was fused with C-terminal of avian reovirus σC protein, the recombinant fusion protein (mBFP-mS1C) show the enhanced intensity of fluorescence which was co-related with the accumulation of more abundant of RNA transcripts as compared with control. Furthermore, transgenic Arabidopsis overexpressing mBFP lines were generated by floral dip method, and the mBFP fluorescence can be observed in the cytosol, ER, and chloroplasts of protoplasts. However, the blue fluorescence couldn’t be detected in the mitochondria. In general, the mBFP can be used as reporter gene in plants, but further modification of mBFP sequences will make it more ideal for the plant research and plant biotechnology.
Adrian, S., Nigel Scott, Mark Fowler (2008). Plant Biotechnology-The genetic manipulation of plants. Oxford University (Book).
Ai, H. W., Shaner, N. C., Cheng, Z., Tsien, R. Y., and Campbell, R. E. (2007). Exploration of new chromophore structures leads to the identification of improved blue fluorescent proteins. Biochemistry 46(20):5904-10.
Alieva, N. O., Konzen, Karen A.,, Field, S. F., Meleshkevitch, Ella A.,, Hunt, M. E., Beltran-Ramirez, V., Miller, D. J., Wiedenmann, J., Salih, A., and Matz, M. V., Matz, M. V. (2008). Diversity and evolution of coral fluorescent proteins. PLoS ONE 3(7): e2680.
Ashraf, S., Singh, P. K., Yadav, D. K., Shahnawaz, M., Mishra, S., Sawant, S. V., and Tuli, R. (2005). High level expression of surface glycoprotein of rabies virus in tobacco leaves and its immunoprotective activity in mice. J Biotechnol 119(1):1-14.
Baldwin, T. O., Christopher, J. A., Raushel, F. M., Sinclair, J. F., M., M., Fisher, A. J., and I., R. (1995). Structure of bacterial luciferase. Current Opinion in Structural Biology 5(6):798-809.
Chang, M. C., Chang, C. C., and Chuang, Y. C. (2004a). Fluorescent intensity of a novel NADPH-binding protein of Vibrio vulnificus can be improved by directed evolution. Biochem Biophys Res Commun 322(1):303-9.
Chang, Y. C., Chang, C. C., Chuang, Y. C., Chen, Y. C., and Chang, M. C. (2004b). Bright fluorescence of a novel protein from Vibrio vulnificus depends on NADPH and the expression of this protein is regulated by a LysR-type regulatory gene. Biochem Biophys Res Commun 319(1):207-13.
Chiu, W. L., Niwa, Y., Zeng, W., Hirano, T., Kobayashi H, and Sheen, J. (1996). Engineered GFP as a vital reporter in plants. Curr Biol 6(3):325-30.
Chuang, Y. C., Chang, T. M, Chang, M. C. (1997). Cloning and characterization of the gene (empV) encoding extracellular metalloprotease from Vibrio vulnificus. Gene 189(2):163-8.
Chung, H. J., Ferl, R. J. (1999). Arabidopsis alcohol dehydrogenase expression in both shoots and roots is conditioned by root growth environment. Plant Physiology 121(2):429-436.
Cohn, D. H., Mileham, A. J., Simon, M. I., Nealson, K. H. (1985). Nucleotide sequence of the luxA gene of Vibrio harveyi and the complete amino acid sequence of the alpha subunit of bacterial luciferase. J Biol Chem 260, 6139-6146.
Cubitt, A. B., Heim, R., Adams, S. R., Boyd, A. E., Gross, L. A., and Tsien, R. Y. (1995). Understanding, improving and using green fluorescent proteins. Trends Biochem Sci 20(11):448-55.
Cubitt, A. B., Woollenweber, L. A., and Heim, R. (1999). Understanding structure-function relationships in the Aequorea victoria green fluorescent protein. Methods Cell Biol 58:19-30.
Diveki, Z., Salanki, K., and Balazs, E. (2002). Limited utility of blue fluorescent protein (BFP) in monitoring plant virus movement. Biochimie 84(10):997-1002.
Dunlap, P. V., Kita-Tsukamoto K. (1999). The prokaryotes an evolving electronic resource for the microbiological community. New York : Springer-Verlag Book Online.
Ellenberg, J., Lippincott-Schwartz, J., and Presley, J. F. (1999). Dual-colour imaging with GFP variants. Trends Cell Biol 9(2):52-6.
Engel, J., Prockop, D. J (1991). The zipper-like folding of collagen triple helices and the effects of mutations that disrupt the zipper. Annual Review of Biophysics and Biophysical Chemistry 20: 137-152.
Foran, D. R., Bromn, W. M. (1988). Nucleotide sequence of the LuxA and LuxB genes of the bioluminescent marine bacterium Vibrio fischeri. Nucleic Acids Res 16(2):777.
Fraga, H., Fernandes, D., Novotny, J., Fontes, R., Esteves da Silva, and G, J. C. (2006). Firefly luciferase produces hydrogen peroxide as a coproduct in dehydroluciferyl adenylate formation. Chembiochem 7(6):929-35.
Gould, S. J., Subramani, S. (1988). Firefly luciferase as a tool in molecular and cell biology. Anal Biochem 175(1):5-13.
Haseloff, J., Siemering, K. R., Prasher, D. C., and Hodg, S. (1997). Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc Natl Acad Sci (PNAS) U S A 94(6):2122-7.
Heim, R., Tsien, R. Y. (1996). Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr Biol 6(2):178-82.
Herring, P. J. (1983). The Spectral Characteristics of Luminous Marine Organisms. proceedings the royal of society (Proc R SocLond) B220:183-217.
Hollis, D. G., Weaver, R. E., Baker, C. N., and Thornsberry, C. (1976). Halophilic Vibrio species isolated from blood cultures. J Clin Microbiol 3(4): 423-431.
Hwang, C. S., Choi E. S, Han S. S, Kim G. J (2012). Screening of a highly soluble and oxygen-independent blue fluorescent protein from metagenome. Biochem Biophys Res Commun 419(4):676-81.
Johnston, T. C., Thompson, R. B., Baldwin, T. O. (1986). Nucleotide sequence of the luxB gene of Vibrio harveyi and the complete amino acid sequence of the beta subunit of bacterial luciferase. J Biol Chem 261(11):4805-11., 4805-4811.
Jongsma, M. (2004). ImpactVector™: ultra-high level expression of proteins in plants. (Website).
Jornvall, H., Persson, B., Krook, M., Atrian, S., Gonzalez-Duarte, R., Jeffery, J., and Ghosh, D. (1995). Short-chain dehydrogenases/reductases (SDR). Biochemistry 34 (18):6003-6013.
Kallberg, Y., Oppermann, U., Jornvall, H., and Persson, B. (2002). Short-chain dehydrogenase/reductase (SDR) relationships: a large family with eight clusters common to human, animal, and plant genomes. Protein Sci 11(3): 636-641.
Kao, T. H., Chen, Y., Pai, C.-H., Chang, M.-C., and Wang, A. H. J. (2011). Structure of a NADPH-dependent blue fluorescent protein revealed the unique role of Gly176 on the fluorescence enhancement. J Struct Biol 174(3):485-93.
Kneen, M., Farinas, J., Li, Y., and Verkman, A. S. (1998). Green fluorescent protein as a noninvasive intracellular pH indicator. Biophys J 74(3):1591-9.
Langley, K. E., Villarejo, M. R., Fowler, A. V., Zamenhof, P. J., and Zabin, I. (1975). Molecular basis of beta-galactosidase alpha-complementation. Proc Natl Acad Sci (PNAS) U S A 72(4):1254-7.
Leslie, A. G. (1990). Refined crystal structure of type III chloramphenicol acetyltransferase at 1.75 A resolution. Proc Natl Acad Sci U S A 85(12): 4133-4137.
Lippincott, S. J., Patterson, George H. (2003). Development and use of fluorescent protein markers in living cells. Science 300(5616):87-91
Lu, S. W., Chang, Ching Chun (2007). Develop plant-based vaccine for poultry against avian reovirus. Institute of biotechnology National Cheng Kung University
(Master's dissertation).
Mann, D. G., Lafayette, Peter R., Abercrombie, L. L., King, Z. R., Mazarei, M., Halter, M. C., Poovaiah, C. R., Baxter, H., Shen, H., Dixon, R. A., Parrott, W. A., and Neal Stewart, C., Jr (2012). Gateway-compatible vectors for high-throughput gene functional analysis in switchgrass (Panicum virgatum L.) and other monocot species. Plant Biotechnol J 10(2):226-36.
Meighen, E. A. (1991). Molecular biology of bacterial bioluminescence. Microbiol Rev 55(1):123-42.
Miyawaki, A., Sawano A, and Kogure, T. (2003). Lighting up cells: labelling proteins with fluorophores. Nat Cell Biol Suppl:S1-7.
Morin, J. G., Hastings, J. W. (1971). Energy transfer in a bioluminescent system. Journal of Cellular Physiology 77(3):313-318.
Nelson, D. L., and Cox, M. M. (2005). Lehninger Principles of Biochemistry. Book 4th ed. Freeman.
Nobelprize.org (2008). The Nobel Prize in Chemistry 2008. (Website).
Oksana, M. S., Paula, J. C., Michael, W. D., and Vladislav, V. V. (2011). An Enhanced Monomeric Blue Fluorescent Protein with the High Chemical Stability of the Chromophore. PLoS ONE 6(12):e28674.
Patterson, G. H., Knobel, S. M., Sharif, W. D., Kain, S. R., and Piston, D. W. (1997). Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy. Biophys J 73(5): 2782-2790.
Prasher, D. C. (1995). Using GFP to see the light. . Trands in Genetics 11:320-323.
Prasher, D. C., Eckenrode, V. K. , Ward, W. W. (1992). Primary structure of the Aequorea victoria green-fluorescent protein. Gene 5;111(2):229-33.
Rouwendal, G. J., Mendes, O., Wolbert, E. J., and Douwe de Boer, A. (1997). Enhanced expression in tobacco of the gene encoding green fluorescent protein by modification of its codon usage. Plant Mol Biol 33(6):989-99.
Shaner, N. C., Steinbach, P. A., and Tsien, R. Y. (2005). A guide to choosing fluorescent proteins. Nature Methods 2(12):905-909.
Shaw, W. V., Packman, L. C., Burleigh, B. D., Dell, A., Morris, H. R., and Hartley, B. S. (1979). Primary structure of a chloramphenicol acetyltransferase specified by R plasmids. Nature 282(5741):870-2.
Shen, J., Zeng Y, Zhuang, X., Sun, L., Yao, X., Pimpl, P., and Jiang, L. (2013). Organelle pH in the Arabidopsis endomembrane system. Mol Plant 6(5):1419-37.
Shimomura, O. (1985). Bioluminescence in the sea: photoprotein systems. Symp Soc Exp Biol 39:351-72.
Shimomura, O. (2006). Bioluminescence: Chemical Principles and and Methods. World Scientific (Book).
Shimomura, O., Frank H. Johnson, Yo Saiga (1962). Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. Cellular physiology 59(3):223-239.
Shimomura, O., Johnson, F. H. (1979). Chemistry of the calcium-sensitive photoprotein aequorin-Detection and Measurement of Free Calcium Ions in Cells
Elsevier/North-Holland, Amsterdam(Book), 73-78.
Stauber, R. H., Horie, K., Carney, P., Hudson, E. A., Tarasova, N. I., Gaitanaris, G. A., and Pavlakis, G. N. (1998). Development and applications of enhanced green fluorescent protein mutants. Biotechniques 24(3):462-6, 468-71.
Su, J.-H., Chuang, Y.-C., Tsai, Y.-C., and Chang, M.-C. (2001). Cloning and Characterization of a Blue Fluorescent Protein from Vibrio vulnificus. Biochemical and Biophysical Research Communications 287, 359-365.
Subach, O. M., Malashkevich, V. N., Zencheck, W. D., Morozova, K. S., Piatkevich, K. D., Almo, S. C., and Verkhusha, V. V. (2010). Structural characterization of acylimine-containing blue and red chromophores in mTagBFP and TagRFP fluorescent proteins. Chem Biol 17(4):333-41.
Tanz, S. K., Castleden, I., Small, I. D., and Millar, A. H. (2013). Fluorescent protein tagging as a tool to define the subcellular distribution of proteins in plants. Front Plant Sci 4:214.
Tomosugi, W., Matsuda, T., Tani, T., Nemoto, T., Kotera, I., Saito, K., Horikawa, K., and Nagai, T. (2009). An ultramarine fluorescent protein with increased photostability and pH insensitivity. Nat Methods 6(5):351-3.
Treynor, T. P., Mayo S. L, Daugherty, P. S, Mena Ma, (2006). Blue fluorescent proteins with enhanced brightness and photostability from a structurally targeted library. Nat Biotechnol 24(12):1569-71. .
Van, E. F., Molthoff, J. W., Conner, A. J., Nap, J. P., Pereira, A.,, and Stiekema, W. J. (1995). pBINPLUS: an improved plant transformation vector based on pBIN19. Transgenic Res 4(4):288-90.
Viviani, V. R. (2002). The origin, diversity, and structure function relationships of insect luciferases. Cell Mol Life Sci 59(11):1833-50.
Wachter, R. M., King, B. A., Heim, R., Kallio, K., Tsien, R. Y., Boxer, S. G., and Remington, S. J. (1997). Crystal structure and photodynamic behavior of the blue emission variant Y66H/Y145F of green fluorescent protein. Biochemistry 36(32):9759-65.
Ward, W. W. (1979). Energy transfer processes in bioluminescence. Photochem Photobiol 4 (1979) 1-57.
Ward, W. W. (1988). Biochemical and Physical Properties of Green Fluorescent Protein. Copyright © 2006 John Wiley & Sons, Inc (Book).
Ward, W. W. W., Chris W. Cody, Russell C. Hart, Milton J. Cormier (1980). Spectrophotometric identity of the energy transfer chromophores in renilla and aequorea green-fluorescent proteins. Photochemistry and Photobiology 31, 611-615.
Youvan, D. C., Michel-Beyerle Maria E. (1996). Structure and fluorescence mechanism of GFP. Nat Biotech 14, 1219-1220.
Zapata, H., Otilia, Griesbeck, O., and Griesbeck, O. (2003). Efficiently folding and circularly permuted variants of the Sapphire mutant of GFP. BMC Biotechnology 3(1):1-6.
Zheng, J. (2006). Spectroscopy-based quantitative fluorescence resonance energy transfer analysis. Methods Mol Biol 337:65-77.