簡易檢索 / 詳目顯示

研究生: 陳河卿
Chen, Ho-Ching
論文名稱: 菸鹼醯胺腺嘌呤二核甘酸磷酸氧化酶產生的氧化在鉑金引起急性腎衰竭所扮演的角色
Role of NADPH oxidase 2-mediated ROS generation in cisplatin-induced acute kidney injury
指導教授: 謝奇璋
Shieh, Chi-Chang
宋俊明
Sung, Junne-Ming
學位類別: 博士
Doctor
系所名稱: 醫學院 - 臨床醫學研究所
Institute of Clinical Medicine
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 57
中文關鍵詞: 菸鹼醯胺腺嘌呤二核甘酸磷酸氧化酶活化氧分子鉑金引起急性腎衰竭嗜中性白血球白血球介素-6細胞間黏附因子1
外文關鍵詞: NOX2, ROS, CDDP-induced AKI, Neutrophil transmigration, IL-6, ICAM-1
相關次數: 點閱:86下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鉑金是臨床是常見用來治療腫瘤的化療藥物,但是由於隨著累積的劑量會產生常見的急性腎衰竭的副作用。而鉑金引起的急性腎衰竭目前已知的病理機轉包括產生大量的活化氧分子(ROS)和引發發炎反應。活化氧分子在腎臟的來源主要是菸鹼醯胺腺嘌呤二核甘酸磷酸氧化酶家族所產生的。而其中菸鹼醯胺腺嘌呤二核甘酸磷酸氧化酶第二型 (NOX2) 在先前的各種動物模式下腎臟都有很高的表達,包括缺血性急性腎衰竭,糖尿病,鋅缺乏腎臟病等等。但是在鉑金引起的急性腎衰竭中,目前還沒有被探討過。我們的實驗發現NOX2在鉑金引起的急性腎衰竭有高的表達量,而當我們使用NOX2剔除的老鼠發現可以降低活化氧分子的產生,進一步去延緩急性腎衰竭。在腎小管損傷(tubular injury score),急性腎衰竭的早期指標(Kim-1),和主要的發炎激素IL-6和IL-1α都有很明顯的下降。也因此我們進一步去分析是否和免疫細胞是否有相關性,結果我們發現鉑金引起的急性腎衰竭有大量的嗜中性白血球的浸潤,而在NOX2剔除的老鼠嗜中性白血球有很明顯下降的情形。這樣的結果讓我們進一步去分析嗜中性白血球在發炎情況下到達受傷的組織過程,結果我們發現,血管內皮的黏附因子ICAM-1和趨化因子CXCL1在NOX2剔除的老鼠上有明顯的表達量下降,進一步去降低嗜中性白血球浸潤的現象。因此我們的結論是NOX2產生的大量活化氧分子藉由嚴重的發炎反應和大量的嗜中性白血球的浸潤造成急性腎衰竭,如果我們可以適當的調控活化氧分子,可以避免臨床上鉑金引起的腎衰竭的副作用。

    Cisplatin (CDDP) is the most common drug for cancer treatment; however, it causes severe nephrotoxicity, thereby limiting its therapeutic application and efficiency. Oxidative stress is the main contributor to the pathogenesis of CDDP nephrotoxicity. The major source of oxidative stress in the kidneys is reactive oxygen species (ROS) produced by reduced nicotinamide adenine dinucleotide-phosphate (NADPH) oxidases. NADPH oxidase 2 (NOX2), one of the NADPH oxidase isoforms, is highly expressed in ischemia-reperfusion injury (IRI), diabetes mellitus, and zinc deficiency associated with chronic kidney disease (CKD). However, the functional role and mechanism of NOX2 in CDDP-induced acute kidney injury (AKI) is unknown. In this study, we aimed to elucidate the role of NOX2 during CDDP-induced AKI. We demonstrated that NOX2 mediates ROS generation, the important mediator in CDDP-induced AKI. NOX2 knockout alleviates CDDP-induced loss of renal function, tubular injury score, early acute kidney injury biomarker Kim-1, and the pro-inflammatory factors interleukin (IL)-6 and IL-1α. We also showed the overexpression of intercellular adhesion molecule 1 (ICAM-1) and the chemoattractant C-X-C motif chemokine ligand 1 (CXCL1) and an increase in neutrophil transmigration in CDDP-induced AKI. In addition, the inhibition of NOX2 significantly reduces neutrophil transmigration in CDDP-induced AKI by reducing ICAM-1 and CXCL1. We concluded that NOX2 aggravates CDDP nephrotoxicity by promoting ROS-mediated inflammation and neutrophil transmigration.

    Chapter 1. Introduction 1 1.1 Pathogenesis of CDDP-induced acute kidney injury 1 1.2 ROS generation in CDDP-induced acute kidney injury 2 1.3 NADPH oxidases isoforms in healthy kidney and diseased kidney 2 1.4 Immune response in acute kidney injury 4 1.5 The consequence of acute kidney injury 5 1.6 Neutrophil transmigration in AKI 6 1.7 CDDP-induced AKI model 6 1.8 Hypothesis and research goal 7 Chapter 2. Inhibition of NOX2 protects against CDDP induced acute kidney injury 8 2.1 Background 8 2.2 Materials and Methods 9 2.3 Results 12 2.4 Discussion 15 2.5 Figures 17 Chapter 3. Reduction of neutrophil transmigration protects against CDDP-induced AKI by lowering the expression levels of ICAM-1 and CXCL1 in KO of NOX2 27 3.1 Background 27 3.2 Materials and Methods 27 3.3 Results 30 3.4 Discussion 31 3.5 Figures 33 Chapter 4. Conclusion, Discussion, and Prospects 40 4.1 Conclusion 40 4.2 Discussion 40 4.3 Prospects 46 References 47 Publications 56

    References
    1. Gonzales-Vitale JC, Hayes DM, Cvitkovic E, Sternberg SS. The renal pathology in clinical trials of cis-platinum (II) diamminedichloride. Cancer. 1977;39(4):1362-1371. doi:10.1002/1097-0142(197704)39:4<1362::aid-cncr2820390403>3.0.co
    2. Lebwohl D, Canetta R. Clinical development of platinum complexes in cancer therapy: a historical perspective and an update. Eur J Cancer. 1998;34(10):1522-1534. doi:10.1016/s0959-8049(98)00224-x
    3. Pabla N, Dong Z. Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney Int. 2008;73(9):994-1007. doi:10.1038/sj.ki.5002786
    4. Ciarimboli G, Ludwig T, Lang D, et al. Cisplatin nephrotoxicity is critically mediated via the human organic cation transporter 2. Am J Pathol. 2005;167(6):1477-1484. doi:10.1016/S0002-9440(10)61234-5
    5. Kuhlmann MK, Burkhardt G, Köhler H. Insights into potential cellular mechanisms of cisplatin nephrotoxicity and their clinical application. Nephrol Dial Transplant. 1997;12(12):2478-2480. doi:10.1093/ndt/12.12.2478
    6. Zhang B, Ramesh G, Norbury CC, Reeves WB. Cisplatin-induced nephrotoxicity is mediated by tumor necrosis factor-alpha produced by renal parenchymal cells. Kidney Int. 2007;72(1):37-44. doi:10.1038/sj.ki.5002242
    7. Liu P, Li X, Lv W, Xu Z. Inhibition of CXCL1-CXCR2 axis ameliorates cisplatin-induced acute kidney injury by mediating inflammatory response. Biomed Pharmacother. 2020;122:109693. doi:10.1016/j.biopha.2019.109693
    8. Soni H, Kaminski D, Gangaraju R, Adebiyi A. Cisplatin-induced oxidative stress stimulates renal Fas ligand shedding. Ren Fail. 2018;40(1):314-322. doi:10.1080/0886022X.2018.1456938
    9. Ozkok A, Edelstein CL. Pathophysiology of cisplatin-induced acute kidney injury. Biomed Res Int. 2014;2014:967826. doi:10.1155/2014/967826
    10. Mapuskar KA, Steinbach EJ, Zaher A, et al. Mitochondrial Superoxide Dismutase in Cisplatin-Induced Kidney Injury. Antioxidants (Basel). 2021;10(9):1329. Published 2021 Aug 24. doi:10.3390/antiox10091329
    11. Aydinoz S, Uzun G, Cermik H, et al. Effects of different doses of hyperbaric oxygen on cisplatin-induced nephrotoxicity. Ren Fail. 2007;29(3):257-263. doi:10.1080/08860220601166487
    12. Siddik ZH. Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene. 2003;22(47):7265-7279. doi:10.1038/sj.onc.1206933
    13. Baliga R, Zhang Z, Baliga M, Ueda N, Shah SV. In vitro and in vivo evidence suggesting a role for iron in cisplatin-induced nephrotoxicity. Kidney Int. 1998;53(2):394-401. doi:10.1046/j.1523-1755.1998.00767.x
    14. Mi XJ, Hou JG, Wang Z, et al. The protective effects of maltol on cisplatin-induced nephrotoxicity through the AMPK-mediated PI3K/Akt and p53 signaling pathways. Sci Rep. 2018;8(1):15922. doi:10.1038/s41598-018-34156-6
    15. Kawahara T, Quinn MT, Lambeth JD. Molecular evolution of the reactive oxygen-generating NADPH oxidase (Nox/Duox) family of enzymes. BMC Evol Biol. 2007;7:109. doi:10.1186/1471-2148-7-109
    16. Fukuda M, Nakamura T, Kataoka K, et al. Potentiation by candesartan of protective effects of pioglitazone against type 2 diabetic cardiovascular and renal complications in obese mice. J Hypertens. 2010;28(2):340-352. doi:10.1097/HJH.0b013e32833366cd
    17. Karim AS, Reese SR, Wilson NA, Jacobson LM, Zhong W, Djamali A. Nox2 is a mediator of ischemia reperfusion injury. Am J Transplant. 2015;15(11):2888-2899. doi:10.1111/ajt.13368
    18. Rock KL, Latz E, Ontiveros F, Kono H. The sterile inflammatory response. Annu Rev Immunol. 2010;28:321-342. doi:10.1146/annurev-immunol-030409-101311
    19. Deng B, Lin Y, Ma S, et al. The leukotriene B4-leukotriene B4 receptor axis promotes cisplatin-induced acute kidney injury by modulating neutrophil recruitment. Kidney Int. 2017;92(1):89-100. doi:10.1016/j.kint.2017.01.009
    20. Nemoto T, Burne MJ, Daniels F, et al. Small molecule selectin ligand inhibition improves outcome in ischemic acute renal failure. Kidney Int. 2001;60(6):2205-2214. doi:10.1046/j.1523-1755.2001.00054.x
    21. Thadhani R, Pascual M, Bonventre JV. Acute renal failure. N Engl J Med. 1996;334(22):1448-1460. doi:10.1056/NEJM199605303342207
    22. Coca SG, Singanamala S, Parikh CR. Chronic kidney disease after acute kidney injury: a systematic review and meta-analysis. Kidney Int. 2012;81(5):442-448. doi:10.1038/ki.2011.379
    23. Chen HC, Shieh CC, Sung JM. Increasing Staphylococcus Species Resistance in Peritoneal Dialysis-Related Peritonitis over a 10-Year Period in a Single Taiwanese Center. Perit Dial Int. 2018;38(4):266-270. doi:10.3747/pdi.2017.00226
    24. Melnikov VY, Faubel S, Siegmund B, Lucia MS, Ljubanovic D, Edelstein CL. Neutrophil-independent mechanisms of caspase-1- and IL-18-mediated ischemic acute tubular necrosis in mice. J Clin Invest. 2002;110(8):1083-1091. doi:10.1172/JCI15623
    25. Thornton MA, Winn R, Alpers CE, Zager RA. An evaluation of the neutrophil as a mediator of in vivo renal ischemic-reperfusion injury. Am J Pathol. 1989;135(3):509-515.
    26. Jang HR, Rabb H. The innate immune response in ischemic acute kidney injury. Clin Immunol. 2009;130(1):41-50. doi:10.1016/j.clim.2008.08.016
    27. Ataie-Kachoie P, Pourgholami MH, Richardson DR, Morris DL. Gene of the month: Interleukin 6 (IL-6). J Clin Pathol. 2014;67(11):932-937. doi:10.1136/jclinpath-2014-202493
    28. Zegeye MM, Lindkvist M, Fälker K, et al. Activation of the JAK/STAT3 and PI3K/AKT pathways are crucial for IL-6 trans-signaling-mediated pro-inflammatory response in human vascular endothelial cells. Cell Commun Signal. 2018;16(1):55. doi:10.1186/s12964-018-0268-4
    29. Sekiya S, Iwasawa H, Takamizawa H. Comparison of the intraperitoneal and intravenous routes of cisplatin administration in an advanced ovarian cancer model of the rat. Am J Obstet Gynecol. 1985;153(1):106-111. doi:10.1016/0002-9378(85)90605-2
    30. Chen CL, Liao JW, Hu OY, Pao LH. Blockade of KCa3.1 potassium channels protects against cisplatin-induced acute kidney injury. Arch Toxicol. 2016;90(9):2249-2260. doi:10.1007/s00204-015-1607-5
    31. Wang D, Chen Y, Chabrashvili T, et al. Role of oxidative stress in endothelial dysfunction and enhanced responses to angiotensin II of afferent arterioles from rabbits infused with angiotensin II. J Am Soc Nephrol. 2003;14(11):2783-2789. doi:10.1097/01.asn.0000090747.59919.d2
    32. Sugiyama H, Kobayashi M, Wang DH, et al. Telmisartan inhibits both oxidative stress and renal fibrosis after unilateral ureteral obstruction in acatalasemic mice. Nephrol Dial Transplant. 2005;20(12):2670-2680. doi:10.1093/ndt/gfi045
    33. Oudit GY, Liu GC, Zhong J, et al. Human recombinant ACE2 reduces the progression of diabetic nephropathy [published correction appears in Diabetes. 2010 Apr;59(4):1113-4]. Diabetes. 2010;59(2):529-538. doi:10.2337/db09-1218
    34. Chew P, Yuen DY, Stefanovic N, et al. Antiatherosclerotic and renoprotective effects of ebselen in the diabetic apolipoprotein E/GPx1-double knockout mouse. Diabetes. 2010;59(12):3198-3207. doi:10.2337/db10-0195
    35. Cuevas S, Zhang Y, Yang Y, et al. Role of renal DJ-1 in the pathogenesis of hypertension associated with increased reactive oxygen species production [published correction appears in Hypertension. 2012 Apr;59(4):e38]. Hypertension. 2012;59(2):446-452. doi:10.1161/HYPERTENSIONAHA.111.185744
    36. Reel B, Guzeloglu M, Bagriyanik A, et al. The effects of PPAR-γ agonist pioglitazone on renal ischemia/reperfusion injury in rats. J Surg Res. 2013;182(1):176-184. doi:10.1016/j.jss.2012.08.020
    37. Faubel S, Lewis EC, Reznikov L, et al. Cisplatin-induced acute renal failure is associated with an increase in the cytokines interleukin (IL)-1beta, IL-18, IL-6, and neutrophil infiltration in the kidney. J Pharmacol Exp Ther. 2007;322(1):8-15. doi:10.1124/jpet.107.119792
    38. Wang WW, Wang Y, Li K, et al. IL-10 from dendritic cells but not from T regulatory cells protects against cisplatin-induced nephrotoxicity. PLoS One. 2020;15(9):e0238816. doi:10.1371/journal.pone.0238816
    39. Meng XM, Ren GL, Gao L, et al. NADPH oxidase 4 promotes cisplatin-induced acute kidney injury via ROS-mediated programmed cell death and inflammation. Lab Invest. 2018;98(1):63-78. doi:10.1038/labinvest.2017.120
    40. Mapuskar KA, Steinbach EJ, Zaher A, et al. Mitochondrial Superoxide Dismutase in Cisplatin-Induced Kidney Injury. Antioxidants (Basel). 2021;10(9):1329. Published 2021 Aug 24. doi:10.3390/antiox10091329
    41. Mapuskar KA, Wen H, Holanda DG, et al. Persistent increase in mitochondrial superoxide mediates cisplatin-induced chronic kidney disease. Redox Biol. 2019;20:98-106. doi:10.1016/j.redox.2018.09.020
    42. Gong W, Lu L, Zhou Y, et al. The novel STING antagonist H151 ameliorates cisplatin-induced acute kidney injury and mitochondrial dysfunction. Am J Physiol Renal Physiol. 2021;320(4):F608-F616. doi:10.1152/ajprenal.00554.2020
    43. Chung AC, Lan HY. Chemokines in renal injury. J Am Soc Nephrol. 2011;22(5):802-809. doi:10.1681/ASN.2010050510
    44. Bamboat ZM, Ocuin LM, Balachandran VP, Obaid H, Plitas G, DeMatteo RP. Conventional DCs reduce liver ischemia/reperfusion injury in mice via IL-10 secretion. J Clin Invest. 2010;120(2):559-569. doi:10.1172/JCI40008
    45. Deng B, Lin Y, Ma S, et al. The leukotriene B4-leukotriene B4 receptor axis promotes cisplatin-induced acute kidney injury by modulating neutrophil recruitment. Kidney Int. 2017;92(1):89-100. doi:10.1016/j.kint.2017.01.009
    46. Huen SC, Huynh L, Marlier A, Lee Y, Moeckel GW, Cantley LG. GM-CSF Promotes Macrophage Alternative Activation after Renal Ischemia/Reperfusion Injury. J Am Soc Nephrol. 2015;26(6):1334-1345. doi:10.1681/ASN.2014060612
    47. Kelly KJ, Meehan SM, Colvin RB, Williams WW, Bonventre JV. Protection from toxicant-mediated renal injury in the rat with anti-CD54 antibody. Kidney Int. 1999;56(3):922-931. doi:10.1046/j.1523-1755.1999.00629.x
    48. Dinauer MC. Inflammatory consequences of inherited disorders affecting neutrophil function. Blood. 2019;133(20):2130-2139. doi:10.1182/blood-2018-11-844563
    49. Jha JC, Gray SP, Barit D, et al. Genetic targeting or pharmacologic inhibition of NADPH oxidase nox4 provides renoprotection in long-term diabetic nephropathy. J Am Soc Nephrol. 2014;25(6):1237-1254. doi:10.1681/ASN.2013070810
    50. Jung KJ, Min KJ, Park JW, Park KM, Kwon TK. Carnosic acid attenuates unilateral ureteral obstruction-induced kidney fibrosis via inhibition of Akt-mediated Nox4 expression. Free Radic Biol Med. 2016;97:50-57. doi:10.1016/j.freeradbiomed.2016.05.020
    51. Oudit GY, Liu GC, Zhong J, et al. Human recombinant ACE2 reduces the progression of diabetic nephropathy [published correction appears in Diabetes. 2010 Apr;59(4):1113-4]. Diabetes. 2010;59(2):529-538. doi:10.2337/db09-1218
    52. Karim AS, Reese SR, Wilson NA, Jacobson LM, Zhong W, Djamali A. Nox2 is a mediator of ischemia reperfusion injury. Am J Transplant. 2015;15(11):2888-2899. doi:10.1111/ajt.13368
    53. Djamali A, Wilson NA, Sadowski EA, et al. Nox2 and Cyclosporine-Induced Renal Hypoxia. Transplantation. 2016;100(6):1198-1210. doi:10.1097/TP.0000000000001137
    54. Li MS, Adesina SE, Ellis CL, Gooch JL, Hoover RS, Williams CR. NADPH oxidase-2 mediates zinc deficiency-induced oxidative stress and kidney damage. Am J Physiol Cell Physiol. 2017;312(1):C47-C55. doi:10.1152/ajpcell.00208.2016
    55. Muñoz M, Martínez MP, López-Oliva ME, et al. Hydrogen peroxide derived from NADPH oxidase 4- and 2 contributes to the endothelium-dependent vasodilatation of intrarenal arteries. Redox Biol. 2018;19:92-104. doi:10.1016/j.redox.2018.08.004
    56. Ozkok A, Edelstein CL. Pathophysiology of cisplatin-induced acute kidney injury. Biomed Res Int. 2014;2014:967826. doi:10.1155/2014/967826
    57. Deng J, Kohda Y, Chiao H, et al. Interleukin-10 inhibits ischemic and cisplatin-induced acute renal injury. Kidney Int. 2001;60(6):2118-2128. doi:10.1046/j.1523-1755.2001.00043.x
    58. Bamboat ZM, Ocuin LM, Balachandran VP, Obaid H, Plitas G, DeMatteo RP. Conventional DCs reduce liver ischemia/reperfusion injury in mice via IL-10 secretion. J Clin Invest. 2010;120(2):559-569. doi:10.1172/JCI40008
    59. Lee SA, Noel S, Sadasivam M, Hamad ARA, Rabb H. Role of Immune Cells in Acute Kidney Injury and Repair. Nephron. 2017;137(4):282-286. doi:10.1159/000477181
    60. Herter JM, Rossaint J, Spieker T, Zarbock A. Adhesion molecules involved in neutrophil recruitment during sepsis-induced acute kidney injury. J Innate Immun. 2014;6(5):597-606. doi:10.1159/000358238
    61. Tanaka S, Tanaka T, Kawakami T, et al. Vascular adhesion protein-1 enhances neutrophil infiltration by generation of hydrogen peroxide in renal ischemia/reperfusion injury. Kidney Int. 2017;92(1):154-164. doi:10.1016/j.kint.2017.01.014
    62. Girbl T, Lenn T, Perez L, et al. Distinct Compartmentalization of the Chemokines CXCL1 and CXCL2 and the Atypical Receptor ACKR1 Determine Discrete Stages of Neutrophil Diapedesis. Immunity. 2018;49(6):1062-1076.e6. doi:10.1016/j.immuni.2018.09.018
    63. Akcay A, Nguyen Q, He Z, et al. IL-33 exacerbates acute kidney injury. J Am Soc Nephrol. 2011;22(11):2057-2067. doi:10.1681/ASN.2010091011
    64. Liao YC, Wu SY, Huang YF, et al. NOX2-Deficient Neutrophils Facilitate Joint Inflammation Through Higher Pro-Inflammatory and Weakened Immune Checkpoint Activities. Front Immunol. 2021;12:743030. Published 2021 Sep 7. doi:10.3389/fimmu.2021.743030
    65. Huang YF, Lo PC, Yen CL, et al. Redox Regulation of Pro-IL-1β Processing May Contribute to the Increased Severity of Serum-Induced Arthritis in NOX2-Deficient Mice. Antioxid Redox Signal. 2015;23(12):973-984. doi:10.1089/ars.2014.6136
    66. Jha JC, Thallas-Bonke V, Banal C, et al. Podocyte-specific Nox4 deletion affords renoprotection in a mouse model of diabetic nephropathy. Diabetologia. 2016;59(2):379-389. doi:10.1007/s00125-015-3796-0
    67. Babelova A, Avaniadi D, Jung O, et al. Role of Nox4 in murine models of kidney disease. Free Radic Biol Med. 2012;53(4):842-853. doi:10.1016/j.freeradbiomed.2012.06.027
    68. Liu M, Chien CC, Burne-Taney M, et al. A pathophysiologic role for T lymphocytes in murine acute cisplatin nephrotoxicity. J Am Soc Nephrol. 2006;17(3):765-774. doi:10.1681/ASN.2005010102
    69. Lee H, Nho D, Chung HS, et al. CD4+CD25+ regulatory T cells attenuate cisplatin-induced nephrotoxicity in mice. Kidney Int. 2010;78(11):1100-1109. doi:10.1038/ki.2010.139

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE