| 研究生: |
鄭碩元 Cheng, Shuo-Yuan |
|---|---|
| 論文名稱: |
半平面壓電材料受表面移動荷重之反應 Response of a Half-Plane Piezoelectric Materials under Moving Loads on the Surface |
| 指導教授: |
宋見春
Sung, Jian-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 109 |
| 中文關鍵詞: | 壓電材料 、穩態移動載重 |
| 外文關鍵詞: | anisotropic piezoelectric material, steady-state moving load |
| 相關次數: | 點閱:89 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文研究半平面壓電材料受集中電彈荷載移動下之次音速或超音速穩態反應。文中首先介紹以位移函數為出發點的廣義Stroh公式,推演了在移動荷載下,以Stroh特徵值及特徵向量壓電材料之位移場及應力場表達式,依移動荷載速度大小對特徵值的影響,區分反應為次音速或超音速,其次應用格林函數推導次音速及超音速下,任意異向性壓電材料之穩態反應。針對具對稱特性的壓電材料,本文引用Liou & Sung (2006)之壓電材料常數A、B矩陣之顯式,進一步推演位移及應力之解析表達式。本文最後探討不同速度不同受力條件下彈性場與電場耦合情形下材料各點應力之反應。
The steady state response of a half-plane piezoelectric material under concentrated loads moving with subsonic or supersonic speed is investigated. The generalized Stroh formula which starts from the displacement function is introduced first, and with this approach the expressions for displacement field and stress field in terms of Stroh's eigenvalues and eigenvectors of piezoelectric material is deduced. Depending on the effect of the speed of moving load on the eigenvalues, the problem is identified as either subsonic or supersonic. Second, the steady-state responses of piezoelectric materials for subsonic or supersonic cases are derived by the application of Green's function for general anisotropic piezoelectric materials. For symmetric properties of piezoelectric materials, the analytical expressions of the displacement and stress are further developed by employing the explicit expressions of the matrices A and B constructed by Liou & Sung (2006). Finally, the coupling of the elastic field and electric field of the stress field as the speeds and the loading types vary is given numerically for PZT-5H.
[1].Berlincourt D.A., Curran D.R., Jaff H. Piezoelectric and piezomagnetic materials and their function in transducers. Physical Acoustics I-A, W.P.(Ed.),Academic Press, New York, 1964.
[2].Cole.J., Huth,J. Stresses produced in a half plane by moving loads. J.Appl.Mech.Trans.ASME 25,433-436, 1958.
[3].Georgiadis,H.G., Barber,J.R. Steady state transonic motion of a line load over an elastic half space. The corrected Cole/Huth solution. J.Appl. Mech. Trans.ASME 60, 772-774, 1993.
[4].Georgiadis,H.G., Lykotrafitis,G.. A method based on the Radon transform for three-dimensional elastodynamic problems of moving loads. J.Elasticity 65,87-129, 2001.
[5].Liou,J.Y., Sung,J.C. On the generalized Barnett-Lothe tensors for monoclinic piezoelectric materials. International Journal of Solids and Structures 44, 5208-5221, 2007.
[6].Liou,J.Y., Sung,J.C. Supersonic responses induced by point load moving steadily on an anisotropic half-plane. International Journal of Solids and Structures 49, 2254-2272, 2012.
[7].Qu,Z.C,.Chen,Y.H. Explicit expressions of eigencalues and eigenvectors for transversely isotropic piezoelectric materials.Acta Mech.162,213-219,2003.
[8].Sneddon, I.N. The stress produced by a pulse of pressure moving along the surface of a semi-infinite solid. Rendiconti del Circolo Matematico di Palermo 2,57-62,1952.
[9].Sosa,H.A., Castro.M.A. On concentrated loads at the boundary of a piezoelectric half-plane. J.Mech.Phys.Solids,Vol.42,No.7,1105-1122, 1994.
[10].Ting,T.C.T, Anisotropic Elasticity:Theory and Applications. Oxford University Press, New York, 1996.
[11].Ting,T.C.T, Barnett,D.M. Classifications of surface waves in anisotropic elastic materials. Wave Motion 26, 207-218, 1997.
[12].Zhou,Y.T, Lee,K.Y. Exact solutions of a new, 2D frictionless contact model for orthtropic piezoelectric materials indented by a rigid sliding punch. Philosophical Magazine, Vol.92, No.15, 1937-1965,2012.
[13].劉鈞耀,半平面受穩態移動電彈荷載之異向性壓電體表面反應之研究,高苑科技大學-土木工程學系,2012.
[14].周卓明,壓電力學.全華,台北,2003.