| 研究生: |
翁弘聖 Weng, Hung-Sheng |
|---|---|
| 論文名稱: |
可光與熱調控膽固醇液晶彈性微球之結構色及形變 Optically and thermally tunable structural color and deformation of cholesteric liquid crystal elastomer microdroplets |
| 指導教授: |
李佳榮
Lee, Chia-Rong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 膽固醇液晶 、液晶彈性體 、液晶高分子 、偶氮苯分子 、光致異構化 |
| 外文關鍵詞: | cholesteric liquid crystal, photoisomerization, liquid crystal microdroplet, liquid crystal elastomer, polymer network, tunability |
| 相關次數: | 點閱:71 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文乃首次製備出全聚合式布拉格洋蔥狀膽固醇液晶彈性體微球,研究此彈性體微球之可熱與可光調控反射特性與構型大小。實驗製備取消了過去常用的有機溶劑萃取步驟,改用可全聚合材料來製備膽固醇液晶彈性體微球,可大幅提升膽固醇液晶彈性體微球的製備良率與大量減少製程時間。
本論文之膽固醇液晶彈性體微球具備橡膠的彈性伸縮特性與膽固醇液晶的螺旋自組裝有序性,藉由熱與光調控,觀察與探討彈性體微球的反射特性與球體構型大小的變化。在熱調控方面,於加溫過程觀察到膽固醇液晶彈性體微球於玻璃態轉換成橡膠態時的差異,當處於橡膠態升溫過程時,彈性體微球高分子網絡整體結構鬆軟,高溫致使高分子側鏈被擾亂而造成整體彈性體微球體積變大而螺距變長,致使中心結構色有明顯紅移現象發生且反射率下降。在光調控方面,透過UV光的照射,使得處於橡膠態的彈性體微球內主鏈上的偶氮苯發生光致異構化反應,偶氮苯由棒狀trans態轉變成彎曲狀cis態時,眾多彎曲狀cis態分子擾動彈性體微球內高分子主鏈,使得整體彈性體微球體積變大而螺距增加,反射色紅移且反射率下降。此研究成功製備全聚合式膽固醇液晶彈性體微球,並獲得其可熱與可光調控光學反射特性與尺寸大小之資訊,未來可與實驗室長期投入的光渦流光鉗控制系統做結合。
This thesis first fabricated fully-polymerized Bragg-onion-like cholesteric liquid crystal elastomer (CLCE) microdroplets and investigated the optical and thermal tunabilities of their structural color and configuration. To effectively improve the yield for preparing elastomer microdroplets and reduce the production time, a full-polymerization method was used to replace the extraction/backfilling method used in the past.
In the study, the fabricated CLCE microdroplets have both properties of elasticity of rubber and orderliness of spiral self-assembly. Through thermal and optical control, we can simultaneously observe the changes in the structural color and configuration of the CLCE droplets. In terms of thermal tunability, the CLCE droplets can transform from glassy state to rubbery state by heating through the glass transition temperature (Tg). During the heating process in the rubbery state, the polymer network structure of the elastomeric microsphere is relatively soft so that heating can cause the polymer side-chains to be disturbed, causing the microsphere to become larger and the pitch longer, resulting in a red-shift in the structural color and the decrease of the reflectivity. In terms of optical tunability, the irradiation of UV light can induce the azobenzene moieties on the main-chains of the polymer network to undergo tran-cis photoisomerization. This effect can isothermally disturb the polymer main-chains of the network at the rubbery state, where the temperature is slightly higher than Tg, and thereby cause the increase of the droplet volume and the elongation of the pitch, leading to the red-shift of the structural color and the decrease of the reflectivity. The 3D CLCE microspheres are highly sensitive to external parameters, which is helpful for applications associated with microsensors.
[1]P. G. de Gennes and J. Prost, The physics of liquid crystals, (Clarendon Press, New York, 1993).
[2]P. M. Knoll, Displays: Einführung in die technik aktiver und passive anzeigen, (Hüthig Verlag Press, Heidelberg, 1986).
[3]顧鴻壽, 光電液晶平面顯示器:技術基礎及應用第二版, (新文京開發出版公司, 臺灣, 2004).
[4]I. Gvozdovskyy, O. Yaroshchuk, M. Serbina and R. Yamaguchi, “Photoinduced helicalinversion in cholesteric liquid crystal cells with homeotropic anchoring,” Opt. Express 20, 3499–3508 (2012).
[5]J. D. Lin, C. L. Chu, H. Y. Lin, B. You, C. T. Horng, S. Y. Huang, T. S. MO, C. Y. Huang and C. R. Lee, “Wide-band tunable photonic bandgaps based on nematic-refilling cholesteric liquid crystal polymer template samples,” Opt. Mater. Express 5, 1419–1430 (2015).
[6]M. Vennes, S. Martin, T. Gisler, and R. Zentel, “Anisotropic particles from LC polymers for optical manipulation,” Macromolecules 39, 8326–8333(2006).
[7]R. J. Hernandez, A. Mazzulla, A. Pane, andK. Sepulvedae, “Attractive-repulsive dynamics on light-responsive chiral microparticles induced by polarized tweezers,” Lab Chip 13, 459–467(2013).
[8]N. Murazawa, S. Juodkazis, and H. Misawa, “Laser manipulation based on a light-induced molecular reordering ,” Opt. Express 14, 2481–2486(2006).
[9]Y. Geng, J. H. Noh, I. D. Olenik, R. Rupp, G. Lenzini, and J. P. F. Lagerwall, “High-fidelity spherical cholesteric liquid crystal Bragg reflectors generating unclonable patterns for secure authentication,” Sci. Rep. 6, 26840(2016).
[10]S. Abhoff, S. Sukas, T. Yamaguchi, C. Hommersom, L. Gac, and N. Katsonis, “Superstructures of chiral nematic microspheres as all-optical switchable distributors of light,” Sci. Rep. 5, 14183(2015).
[11]C. Ohm, C. Serra, and R. Zentel, “A continuous flow synthesis of micrometer-sized actuators from liquid crystalline elastomers,” Adv.Mater.21, 4859–4862.(2009).
[12]A. Belmonte, Y. Y. Ussembayev, T. Bus, I. Nys, K. Neyts, and A. P. H. J. Schenning, “Dual light and temperature responsive micrometer-sized structural color actuators,” Small 16, 1905219 (2019).
[13]F. Reinitzer, “Beiträge zur kenntniss des cholesterins,” Monatsh. Chemie. 9, 421–441 (1988).
[14]O. Lehmann, “Über fliessende krystalle,” Z. Phys. Chem. 4, 462–472 (1889).
[15]P. Oswald and P. Pieranski, Nematic and cholesteric liquid crystals: concepts and physical properties illustrated by experiments, (CRC Press, Florida , 1997).
[16]P. J. Collings and M. Hird, Introduction to liquid crystals: Chemistry and Physics, (CRC Press, Florida , 1997).
[17]G. Vertogen and W. H. Jeu, Thermotropic liquid crystals: Fundamentals, (Springer Verlag Press, Heidelberg, 1988).
[18]S. Chandrasekhar, Structural classification of thermotropic liquid crystals, (Springer Wiley Press, New York, 2006).
[19]D. K. Yang and S. T. Wu, Fundamentals of liquid crystal devices, (Springer Press, Boston, 1975).
[20]E. B. Priestley, “Liquid crystals,” Ann.Rev.Phys.Chem.24, 441–471 (1973).
[21]A. Saupe, Introduction to liquid crystals, (Springer Press, Boston, 1975).
[22]A. K. George, “Optical anisotropy of nematic liquid crystals,” Phys. Chem. of Liquid 37, 65–71 (1998).
[23]S. T. Wu, U. Efron, and L. D. Hess, “Birefringence measurements of liquid crystals,” Appl. Opt. 23, 3911–3915(1997).
[24]B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics: Ch6 Polarization and Crystal Optics, (Springer Wiley Press, Boston, 1975).
[25]A. Yariv, Optical electronics in modern communications, (Oxford Press, UK, 1997).
[26]J. Li, C. H. Wen, S. Gauza and R. B. Lu, “Refractive indices of liquid crystals for display applications,” J. Disp. Technol. 1, 51–61 (2005).
[27]H. Zocher, “The effect of a magnetic field on the nematic state,” Trans. Faraday Soc. 29, 945–957 (1933).
[28]C. W. Oseen, “The theory of liquid crystals,” Trans. Faraday Soc. 29, 883–900 (1933).
[29]F. C. Frank, “On the theory of liquid crystals,” Faraday Soc. Disc. 25, 19–28 (1958).
[30]P. Sheng, Introduction to the elastic continuum theory of liquid crystals, (Springer Wiley Press, Boston, 1975).
[31]P. G. de Gennes, “Calcul de la distorsion d'une structure cholesterique par un champ magnetique,” Solid State Commun. 6, 163–165 (1968).
[32]W. R. Chen and J. C. Hwang, “The phase behaviour and optical properties of a nematic /chiral dopant liquid crystalline mixture system,” Liq. Crystal. 31, 1539–1546(2004).
[33]R. B. Meyer, “Effects of electric and magnetic fields on the structure of cholesteric liquid crystals,” Appl. Phys. Lett. 12, 281–282 (1968).
[34]W. H. Jeu, “Liquid crystal elastomers: materials and applications,” (Springer Wiley Press, Boston, 1975).
[35]T. J. White and D. J. Broer, “Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers liquid crystals,” Nat.Mater. 14, 1087–1098(2015).
[36]M. Humar1 and I. Musevic, “3D microlasers from self-assembled cholesteric liquid crystal microdroplets,” Opt. Express, 18, 26995–27003(2010).
[37]H. B. Laurent and H. DÜRR, “Organic photochromism,” Pure Appl. Chem. 73, 148–162 (2001).
[38]J. P. Dowling, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75, 1896–1899 (1994).
[39]I. Shimizu, H. Kokado, E. Inoue, “Photoreversible photographic systems. VI. Reverse photochromism of 1,3,3-Trimethylspiro[indoline-2,2’-benzopyran]-8’-carboxylic Acid,” Bull. Chem. Soc. Jpn. 42, 1730–1734 (1969).
[40]邱顯堂, 化工技術, (越吟出版有限公司,臺灣, 2014).
[41]楊博智, “含硝基偶氮苯衍生基光敏性液晶高分子之合成及特性探討,” 國立成功大學化工研究所碩士論文(2003).
[42]Y. Hirshberg, “Reversible formation and eradication of colors by irradiation at low temperatures. a photochemical memory model,” J. Am. Chem. 78, 2304–2312 (1956).
[43]楊博智, “光學活性化合物之合成、物性探討及其在膽固醇型液晶元件之應用探討,” 國立成功大學化工研究所博士論文(2007).
[44]R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Electrically color-tunable defect mode lasing in one-dimensional photonic-band-gap system containing liquid crystal,” Appl. Phys. Lett. 82, 3593–3595 (2003).
[45]J. Cviklinski, A. Tajbakhsh, and E. M. Terentjev, “UV isomerisation in nematic elastomers as a route to photo-mechanical transducer,” Eur. Phys. J. E 9, 427–434 (2002).
[46]Y. Yu, M. Nakano, A. Shishido, T. Shiono, and T. Ikeda, “Effect of cross-linking density on photoinduced bending behavior of oriented liquid-crystalline network films containing azobenzene,” Chem. Mater. 16, 1637–1643 (2004).
[47]T. F. Tadros, Emulsions: Formation, Stability, Industrial Applications, (De Gruyter Press, UK, 2016).
[48]A. Belmonte, T. Bus, D. J. Broer, and A. P. H. J. Schenning, “Patterned full-color reflective coatings based on photonic cholesteric liquid-crystalline particles,” Appl. Mater. Interfaces 11, 14376−14382(2019).
[49]余岳川,生活與化學, (台灣書店出版社, 臺灣, 1997).
[50]Q. Li ,“Liquid crystals beyond displays : Ch3 magnetic liquid crystals,” (Springer Wiley Press , New York, 2012).