| 研究生: |
王志彬 Wang, Chih-Ping |
|---|---|
| 論文名稱: |
薄片雷射切割窗格的光轉向研究 Light deflecting of thin laser cut panels |
| 指導教授: |
吳志陽
Wu, C.Y. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 蒙地卡羅 、雷射切割窗格 |
| 外文關鍵詞: | LASER CUT PANEL, MONTE CARLO METHOD |
| 相關次數: | 點閱:84 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文以研究薄片雷射切割窗格的製程及其光轉向效果為目的。為減少窗格的厚度,在很薄的PET片(125μm)上以KrF準分子雷射切割,製作薄片雷射切割窗格,並利用蒙地卡羅法模擬切縫形成的平行四面體的介面造成光之折射及反射,再以實驗及模擬檢驗薄片雷射切割窗格的光轉向效果。研究結果顯示:(一)入射角小時,轉向到天花板的光分佈範圍較深入室內,(二)入射角小時高寬比愈小有愈多的光轉向到天花板,入射角大時則有相反的傾向。
The purpose of this work is to fabricate a laser-cut panel (LCP) of thin thickness and to investigate the light deflecting efficiency of the thin LCP. To reduce the thickness of the LCP, we cut a thin PET sheet (125μm) by using KrF excimer laser. We use the Monte Carlo method to simulate the refraction and reflection at the interfaces of parallelepipeds formed by laser-cut. The performance of the resulting laser-cut panel is examined by experiment and simulation. The results shows that (1) the incident light is deflected more deeply into the room for lower incidence angle, (2) For incident light with a low angle the LCP with a smaller aspect ratio deflects more light to the ceiling and the tendency is reversed for incident light with a high angle.
1.Martin, K. L., 2002, “An overview of daylighting systems,” Solar Energy, 73, pp. 77-82.
2.Tsangrassoulis, A., Santamouris, D., and Asimakopoulos, D., 1996, “Theoretical and experimental analysis of daylight performance for various shading system,”Energy and Buildings, 24, pp. 223-230.
3.Lorenz, W., 2001, “A glazing unit for solar control, daylighting and energy conservation,” Solar Energy, 70, pp. 109-130.
4.Lorenz, W., 1998, “Design guidelines for a glazing with a seasonal dependent solar transmittance,” Solar Energy, 63, pp. 79-96.
5.Edmonds, I. R., and Greenup, P. J., 2002, “Daylighting in the tropics,” Solar Energy, 73, pp. 111-121.
6.Kuhnke, K., and Hammer, G., 1994, “Directional selective transmission with cylindrical lenses,” Solar Energy, 52, pp. 127-136.
7.Christoffers, D., 1996, “Seasonal shading of vertical south-facades with prismatic panes,” Solar Energy, 57, pp. 339-343.
8.Kurata, K., 1991, “Scale-model experiments of applying a fresnel prism to greenhouse covering,” Solar Energy, 46, pp. 53-57.
9.Wirth, H., Gombert, A., Wittwer, V., and Luther, J., 1998, “Directionally selective dielectric structures for solar radiation control,” Solar Energy, 63, pp. 269-275.
10.Georg, A., Graf, W., Schweiger, D., Witter, V., Nitz, P., and Wilson, H. R., 1998, “Switchable glazing with a large dynamic range in total solar energy transmittance (test),” Solar Energy, 62, pp. 215-228.
11.Wilson, H. R., 1992, “Transmission switching using microencapsulated liquid crystal films,” Solar Energy, 49, pp. 435-445.
12.Edmonds, I. R., 1993, “Performance of laser cut light deflecting panels in daylighting applications,” Solar Energy Materials and Solar Cells, 29, pp. 1-26.
13.Edmonds, I. R., and Reppel, J., 1998, “Angle-selective glazing for radiant heat control in buildings:theory,” Solar Energy, 62, pp. 245-253.
14.Edmonds, I. R., and Pearce, D. J., 1999, “Enhancement of crop illuminance in high latitude greenhouse with laser-cut panel glazing,” Solar Energy, 66, pp. 255-265.
15.Modest, M. F., 2003, “Radiative Heat Transfer,” 2nd ed., Academic press, New York.