研究生: |
藍璟賢 Lan, Ching-Hsien |
---|---|
論文名稱: |
蓖麻裂解油單顆油滴燃燒行為之研究 A Study on the Burning Behavior of Single droplet of Pyrolysis Oil from Castor Seed |
指導教授: |
趙怡欽
Chao, Yei-Chin |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 70 |
中文關鍵詞: | 蓖麻 、熱裂解 、微爆 、液滴燃燒 、懸掛液滴法 |
外文關鍵詞: | Castor seed, Thermal pyrolysis, Micro-explosion, Droplet combustion, Suspended droplet experiment |
相關次數: | 點閱:117 下載:3 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究藉由熱裂解技術產製蓖麻籽裂解油,並利用熱重分析儀探討其裂解與氧化反應隨溫度之變化。結果顯示蓖麻裂解油主要裂解與氧化反應區間發生在100-500℃之間,而最大質量損失率發生在100-320℃之間。其非揮發組分在500℃左右可被引燃,並殘餘約0.18%的殘渣,顯示蓖麻裂解油具有低灰分之特點。而利用熱重分析結果同時也計算了蓖麻熱裂解油引燃溫度、燃盡溫度及綜合燃燒特性指數S。
本研究同時利用懸掛液滴實驗系統,探討不同環境溫度(350℃、450℃及550℃)下蓖麻裂解油滴之受熱行為、微爆現象及燃燒模式。蓖麻籽裂解油為多組分之燃油,因此具有寬廣的沸點範圍,使其受熱過程中行為複雜,並有微爆現象發生,造成液滴表面扭曲變形。其微爆情況依照產生之時機與微爆強度,可區分成三種主要模式:前期的低強度微爆、中期的高強度微爆及後期的中強度微爆。
蓖麻裂解油在環境溫度550℃下發生強微爆後,會釋出較多的揮發油氣並形成可燃油氣,其在高溫環境下被點燃後會形成球對稱之非預混火焰包圍住液滴。液滴燃燒過程中頻繁地發生微爆,但仍能維持接近球體之樣貌,迅速蒸發並維持火焰包住液滴。液滴燃燒後期,揮發性組分皆已揮發掉後,殘留的固態顆粒會接續燃燒,且燃盡後幾乎沒有殘餘物。
In the study, castor oil is produced by thermal pyrolysis and its pyrolysis reaction and oxidation reactions are investigated using thermal gravimetric analysis. The results showed that the main pyrolysis and oxidation reactions occur in the temperature between 100 and 500 °C. The maximum weight loss occurs between 100 and 320 °C. Its non-volatile components may be ignited at about 500 °C and the residue is only about 0.18% of the original weight of the pyrolytic oil. The results of thermal gravimetric analysis are also used to calculate the ignition temperature, burnout temperature and combustion characteristics index (S) of castor pyrolytic oil.
In this study, the suspended droplet experimental system is also used to explore the micro-explosion phenomena and combustion modes of castor pyrolytic oil under different ambient temperatures (350 °C, 450 °C and 550 °C). The pyrolytic oil of castor seeds is a multi-component fuel and therefore has a wide boiling range. It results in a complex process during heating process and micro-explosion occurrs, causing the droplet surface distortion. According to the timing and strength of the micro-explosion, there are three different stages: low intensity micro-explosion in the first stage, high intensity micro-explosion in the second stage and medium intensity micro-explosion in the last stage.
After strong micro-explosion occurred in 550 °C ambient temperature, it will release more volatile vapor and the flammable mixture will form a non-premixed flame wrapping droplets after it is ignited in high temperature environments. During the combustion process of the droplet, the micro-explosion occurs continuously, but the droplet still maintains the appearance close to a sphere. The droplet rapidly evaporates and the flame wraps the droplet. In the latter period of the droplet combustion, volatile components have been completely evaporated, residual solid particle will continue burning, and there is almost no residue after burning.
[1] Agblevor, F. A., Besler, S. and Wiselogel, A. E., “Fast Pyrolysis of Stored Biomass Feedstocks,” Energy and Fuels, 9 pp. 635-40, 1995.
[2] Sujatha, M., Reddy, T. P. and Mahasi, M. J., “Role of Biotechnological Interventions in the Improvement of Castor (Ricinus Communis L.) and Jatropha Curcas L,” Biotechnol Adv, 26 (5) pp. 424-35, 2008.
[3] Demirbas, A., “Mechanisms of Liquefaction and Pyrolysis Reactions of Biomass,” Energy Conversion and Management, 41 pp. 633-46, 2000.
[4] Cantrell, K., Ro, K., Mahajan, D., Anjom, M. and Hunt, P. G., “Role of Thermochemical Conversion in Livestock Waste-to-Energy Treatments Obstacles and Opportunities,” Ind. Eng. Chem. Res., 46 pp. 8918-27, 2007.
[5] Singh, A., Nigam, P. S. and Murphy, J. D., “Renewable Fuels from Algae: An Answer to Debatable Land Based Fuels,” Bioresour Technol, 102 (1) pp. 10-6, 2011.
[6] Sehgal, P., Kumar, M. K. O. and Vijayaraghavan, R., “Purification, Characterization and Toxicity Profile of Ricin Isoforms from Castor Beans,” Food Chem Toxicol, 48 (11) pp. 3171-6, 2010.
[7] Figueiredo, M. K. K., Romeiro, G. A. and Damasceno, R. N., “Low Temperature Conversion (Ltc) of Castor Seeds—a Study of the Oil Fraction (Pyrolysis Oil),” Journal of Analytical and Applied Pyrolysis, 86 (1) pp. 53-57, 2009.
[8] Neto, D. C. L. and Steidle, A. J., “Potential Crops for Biodiesel Production in Brazil a Review,” World Journal of Agricultural Sciences, 7 (2) pp. 206-17, 2011.
[9] Ogunniyi, D. S., “Castor Oil: A Vital Industrial Raw Material,” Bioresour Technol, 97 (9) pp. 1086-91, 2006.
[10] Jain, A. K. and Suhane, A., “Research Approach and Prospects of Non Edible Vegetable Oil as a Potential Resource for Biolubricant - a Review,” Advanced Engineering and Applied Sciences: An International Journal, 1 (1) pp. 23-32, 2012.
[11] Fox, N. J. and Stachowiak, G. W., “Vegetable Oil-Based Lubricants—a Review of Oxidation,” Tribology International, 40 (7) pp. 1035-46, 2007.
[12] Guerci, A. S. and Antonio, “Various Uses of the Castor Oil Plant (Ricinus Communis L.) a Review,” Journal of Ethnopharmacology, 5 pp. 117 – 37, 1982.
[13] Barnes, D. J., Baldwin, B. S. and Braasch, D. A., “Degradation of Ricin in Castor Seed Meal by Temperature and Chemical Treatment,” Industrial Crops and Products, 29 (2-3) pp. 509-15, 2009.
[14] Lima, R. L. S., Severino, L. S., Sampaio, L. R., Valdinei Sofiatti, Jucélia A. Gomes and Napoleão E. M. Beltrão, “Blends of Castor Meal and Castor Husks for Optimized Use as Organic Fertilizer,” Industrial Crops and Products, 33 (2) pp. 364-68, 2011.
[15] 陳冠霖, “蓖麻油脂化學品的製造與觸媒熱裂解蓖麻粕之研究”, 國立成功大學化學工程學系, 碩士論文, 2013。
[16] Cantrell, K., Ro, K., Mahajan, D., Anjom, M. and Hun, P. G., “Role of Thermochemical Conversion in Livestock Waste-to-Energy Treatments: Obstacles and Opportunities,” Ind. Eng. Chem. Res., 46 pp. 8918-27, 2007.
[17] Bridgwater, A. V., “Review of Fast Pyrolysis of Biomass and Product Upgrading,” Biomass and Bioenergy, 38 pp. 68-94, 2012.
[18] Goyal, H. B., Diptendu Seal and Saxena,R. C., “Bio-Fuels from Thermochemical Conversion of Renewable Resources: A Review,” Renewable and Sustainable Energy Reviews, 12 (2) pp. 504-17, 2008.
[19] Koufopanos, C. A., Papayannakos, N., Maschio, G. and Lucchesi, A., “Modelling of the Pyrolysis of Biomass Particles. Studies on Kinetics, Thermal and Heat Transfer Effects,” The Canadian Journal of Chemical Engineering, 69 pp. 907-15, 1991.
[20] Singh, R. K. and Shadangi, K. P., “Liquid Fuel from Castor Seeds by Pyrolysis,” Fuel, 90 (7) pp. 2538-44, 2011.
[21] Patel, M. M., Grow, T. D. and Young, C. B., “Combustion Rates of Lignite Char by TGA,” Fuel,67 (2) pp. 165-169, 1988.
[22] Vitolo, S. and Ghetti, P., “Physical and Combustion Characterization of Pyrolytic Oils Erived from Biomass Material Upgraded by Catalytic Hydrogenation,” Fuel, 73 (11) pp. 1810-12, 1994.
[23] Liu, J. Y., Sun, S. Y., Xie, W. M., Chen, T. and Chen, M. T., “Study on Industrial Sludge Catalytic Combustion by TGA,” International Conference on Energy and Environment Technology (ICEET ), pp. 849-852, 2009.
[24] Law, C. K., “Combustion Physics,” New York: Cambridge University Press, 2006.
[25] Spalding, D. l., “The Combustion of Liquid Fuels,” Fuel, 32 pp. 169-185, 1953.
[26] Ivanov, V. M. and Nefedov, P. I., ”Experimental Investigation of the Combustion Process in Nature and Emulsified Fuels.” NASA TT F-258, 1965.
[27] Wang, C. H. and Law, C. K., ‘‘Microexplosion of Fuel Droplets under High Pressure,’’ Combustion and Flame, 59 pp. 53-62, 1985.
[28] Wang, C. H. and Chen, J. T., ‘‘An Experimental Investigation of the Burning Characteristics of Water-Oil Emulsions,’’ Int. Comm. Heat Mass Transfer, 23 (6) pp. 823-834, 1996.
[29] Tsue, M., Kadota, T., Segawa, D. and Yamasaki, H., ‘‘Statistical Analysis on Onset of Microexplosion for An Emulsion Droplet,’’ Twenty-Sixth Symposium (International) on Combustion, The Combustion Institute, pp. 1629-1635, 1996.
[30] Villasenor, R. and Garcia, F., “An Experimental Study of the Effects of Asphaltenes on Heavy Fuel Oil Droplet Combustion,” Fuel, 78 pp. 933-944, 1999.
[31] Calabria, R., Chiariello, F. and Massoli, P., “Combustion Fundamentals of Pyrolysis Oil Based Fuels,” Experimental Thermal and Fluid Science , 31 pp.413-420, 2007.
[32] Lam, S. C. A. and Sobiesiak, A., “Biodiesel Droplet Combustion,” Journal of Kones Powertrain and Transport, 13 (2) pp. 267-274, 2006.
[33] Wardana, I. N. G., “Combustion Characteristics of Jatropha Oil Droplet at Various Oil Temperatures,” Fuel, 89 pp. 659-664, 2010.
[34] Hou, S. S., Rizal, F. M., Lin, T. H., Yang, T. Y. and Wan, H. P., “Microexplosion and ignition of droplets of fuel oil/bio-oil (derived from lauan wood) blends,” Fuel, 113 pp. 31-42, 2013.
[35] Wornat, M. J., Porter, B. G. and Yang, N. Y. C., “Single Droplet Combustion of Biomass Pyrolysis Oils,” Energy and Fuels, 8 pp. 1131-42, 1994.
[36] Botero, M. L., Huang, Y., Zhu, D. L., Molina, A. and Law, C. K., “Droplet Combustion of Ethanol, Diesel, Castor Oil Biodiesel, and Their Mixtures,” U.S. National Technical Meeting of the Combustion Institute, 2011.
[37] Scholza, V. and Silvab, J. N. D., “Prospects and risks of the use of castor oil as a fuel,” BIOMASS AND BIOENERGY, 32 pp. 95-100, 2008.
[38] 周軍, 張海, 呂俊复, “不同升溫速率下石油焦燃燒特性的熱重分析,” COAL CONVERSION, 29 (2) pp. 39-43, 2006.
[39] 陳建原, 孫學信, “煤的揮發分釋放特性指數燃燒特性指數的確立,” 動力工程, 7 (5) pp. 33-36, 1987.
[40] 李睿, 金保升, 賈相如, “污泥熱解油的燃燒特性及動力學模型,” Journal of Combustion Science and Technology, 15 (4), 2009.