| 研究生: |
廖凱唯 Liao, Kai-Wei |
|---|---|
| 論文名稱: |
機器學習應用於軟磁材料積層製造之磁特性預測 Application of Machine Learning in Magnetic Characteristics Prediction of Additive Manufactured Soft Magnetic Composite |
| 指導教授: |
蔡明祺
Tsai, Mi-Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 50 |
| 中文關鍵詞: | 積層製造 、選擇性雷射熔融 、軟磁材料 、機器學習 、進化演算法 |
| 外文關鍵詞: | Additive manufacturing, selective laser melting (SLM), soft magnetic composite (SMC), machine learning, evolutionary algorithm |
| 相關次數: | 點閱:102 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
積層製造技術具高度客製化與實現複雜幾何的特性,應用快速發展如汽車、航太與生醫產業。選擇性雷射熔融金屬積層製造技術於磁性材料的製程試作,參數選擇流程相當繁複,一般須經由主觀地觀察及錯誤嘗試,導致效率不高且可重複性低,特別於磁性材料列印時,除了考慮材料結構強度外,還需要考慮成品的導磁特性,使得參數選用更加複雜。本研究導入機器學習於列印參數之選擇設定,採用資料導向(Data-driven)的方式,以減少錯誤嘗試的耗時,進而提高效率。本文主要在探討應用機器學習在磁性材料之積層製造時的參數選用,利用機器學習的演算法XGBoost,建立一套有效率、可重複性高的軟磁材料積層製造參數選用流程。
Selective laser melting (SLM) is one of the widely used metal additive manufacturing (AM) techniques. While SLM is able to produce high quality products, the parameter selection process can be very complicated, especially for magnetic materials. The mechanical properties need to be concerned as well as the magnetic characteristics, which makes the parameter selecting process more complicated. In this research, the parameter selection process of magnetic material for SLM will be explored. The process that integrates machine algorithm and evolutionary algorithm, comparing with the existing approach, is not only repeatable but timesaving.
[1] K.-J. Jhong, W.-C. Huang, and W.-H. Lee, "Microstructure and Magnetic Properties of Magnetic Material Fabricated by Selective Laser Melting," Physics Procedia, 2016.
[2] C. Y. Yap, C. K. Chua, Z. L. Dong, Z. H. Liu, D. Q. Zhang, L. E. Loh, and S. L. Sing, "Review of selective laser melting: Materials and applications," Applied Physics Reviews, 2015.
[3] H. Shokrollahi and K. Janghorban, "Soft magnetic composite materials (SMCs)," Journal of Materials Processing Technology, 2007.
[4] K.-J. Jhong, T.-W. Chang, W.-H. Lee, M.-C. Tsai, and I.-H. Jiang, "Characteristic of high frequency Fe-Si-Cr material for motor application by selective laser melting," AIP Advence, 2019.
[5] R. Ramprasad, R. Batra, G. Pilania, A. Mannodi-Kanakkithodi, and C. Kim, "Machine learning in materials informatics: recent applications and prospects," Computational Materials, 2017.
[6] C. Kamath, "Data mining and statistical inference in selective laser melting," The International Journal of Advanced Manufacturing Technology, 2016.
[7] B. Kappes, S. Moorthy, D. Drake, H. Geerlings, and A. Stebner, "Machine Learning to Optimize Additive Manufacturing Parameters for Laser Powder Bed Fusion of Inconel 718," in Proceedings of the 9th International Symposium on Superalloy 718 & Derivatives: Energy, Aerospace, and Industrial Applications, 2018.
[8] B. Yuan, G. M. Guss, A. C. Wilson, S. P. Hau‐Riege, P. J. DePond, S. McMains, M. J. Matthews, and B. Giera, "Machine‐Learning‐Based Monitoring of Laser Powder Bed Fusion," Advanced Materials Technologies, 2018.
[9] 東台精積AMP-160. Available: http://www.tongtai.com.tw/tw/product-detail.php?id=315
[10] 嘉鋼精密工業股份有限公司. Available: http://www.cysteel.com.tw/
[11] J. P. Kruth, L. Froyen, J. Van Vaerenbergh, P. Mercelis, M. Rombouts, and B. Lauwers, "Selective laser melting of iron-based powder," Journal of Materials Processing Technology, 2004.
[12] KEYENCE VHX-5000. Available: https://www.keyence.com.tw/products/microscope/digital-microscope/vhx-5000/index.jsp
[13] B-H Analyzer SY-8218 Available: https://www.iti.iwatsu.co.jp/en/products/sy/sy8218_top_e.html
[14] Kaggle: Your Home for Data Science. Available: https://www.kaggle.com/
[15] A. K. Jain, J. C. Mao, and K. M. Mohiuddin, "Artificial neural networks: A tutorial," (in English), Computer, 1996.
[16] T. Chen and C. Guestrin, "Xgboost: A scalable tree boosting system," Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, 2016.
[17] Scikit-learn algorithm cheat-sheet. Available: https://scikit-learn.org/stable/tutorial/machine_learning_map/index.html
[18] T. Bäck, "Evolutionary algorithms in theory and practice: evolution strategies, evolutionary programming, genetic algorithms," Oxford University Press, Inc., 1996.
[19] Python API Reference. Available: https://xgboost.readthedocs.io/en/latest/python/python_api.html#module-xgboost.sklearn
[20] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, "A fast and elitist multiobjective genetic algorithm: NSGA-II," IEEE Transactions on Evolutionary Computation, 2002.