簡易檢索 / 詳目顯示

研究生: 鐘雅齡
Chung, Ya-Ling
論文名稱: 飲水砷濃度及上皮生長因子受器表現與泌尿道癌症的相關性
Arsenic level in drinking water, expression of epidermal growth factor receptor, and urinary cancers
指導教授: 郭浩然
Guo, How-Ran
學位類別: 碩士
Master
系所名稱: 醫學院 - 環境醫學研究所
Department of Environmental and Occupational Health
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 104
中文關鍵詞: 劑量效應關係泌尿道癌症上皮生長因子受器
外文關鍵詞: EGF-R, arsenic, urinary cancer, dose-response effect
相關次數: 點閱:89下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   全台灣有五十萬以上的居民曾經飲用含砷量超過0.05 ppm的水,且根據台灣、墨西哥、智利以及美國的許多研究已經發現無機砷的暴露會增加皮膚癌、膀胱癌、腎臟癌以及肺癌的發生率,因此砷的健康效應乃是公共衛生的重要課題。在無機砷的致癌機轉部分,有研究指出在細胞實驗中,無機砷會促使細胞改變以及腫瘤發展,並會調節mitogen-activated protein kinase一連串的反應,進而促使上皮生長因子受器過度表現。近年來台灣地區雖然有不少研究在探討砷暴露和泌尿道癌症的相關性,但大多是針對西南烏腳病地區和蘭陽盆地做劑量效應的探討,而且沒有較具特異性的生物指標。因此本研究擴大研究範圍,探討全台灣飲水含砷量和泌尿道癌症(包括膀胱、腎臟、輸尿管、尿道以及前列腺癌)的相關性,並評估用上皮生長因子受器當作砷暴露生物指標的可行性。
      在飲水含砷量部分,本研究採用1976年政府所發表的井水砷濃度之測量報告,其中共包含有311個鄉鎮。此調查結果將水中砷濃度分成3組,分別為低於0.05 ppm、0.05-0.35 ppm以及高於0.35 ppm。泌尿道癌症死亡率則是收集1971年到2000年之全國死亡檔及人口檔資料庫,選取死於膀胱癌、腎臟癌、輸尿管癌、尿道癌及前列腺癌的人,並使用多變項線性回歸模式,分析飲水含砷量和泌尿道癌症的劑量效應關係。
      此外,我們收集某教學醫院之住院病人作為研究族群,並同時尋找來院健檢的病人當作對照組,針對性別、年齡,以及抽煙等可能的干擾因子進行配對之後,評估上皮生長因子受器表現量與泌尿道癌症之關係,並比較不同病理組織診斷病患血清上皮生長因子受器之濃度,用Wilcoxon rank sum test來分析結果是否有達統計學上顯著性。血清中上皮生長因子受器是以酵素結合免疫吸附分析法測量其表現量,所有數據分析是使用SAS 8.1版統計軟體檢定。
      在劑量效應關係研究中,共有8649名男性及4829名女性死亡泌尿道癌,另外還有4891名男性死於前列腺癌。在調整年齡並以最低砷濃度組作為參考,發現到飲水含砷量高於0.35ppm會增加泌尿道癌死亡率,不論男性或是女性都有達到統計顯著相關,但飲水含砷量在0.05-0.35 ppm則無此相關。在前列腺癌,不論是在飲水含砷量高於0.35ppm或是在0.05-0.35 ppm都沒有相關。
      在上皮生長因子受器研究中,病例組有55樣本,對照組則有12個樣本。所測得上皮生長因子受體的平均濃度,病例組與對照組濃度以Wilcoxon rank sum test作檢定後發現沒有達統計上顯著差異(83.97 ± 34.90 fmol/mL比76.19 ± 17.84 fmol/mL, p=0.28)。經配對可能的干擾因子(性別、年齡、抽煙狀態)之11組個案,其血清中上皮生長因子受器平均值表現量依舊是病例組比對照組高,但無達到統計顯著(p=0.16)。另外再比較組織學型態,結果發現移行細胞癌比腎細胞癌的表現量略高。評估砷暴露和上皮生長因子受器的關係,結果顯示並沒有相關。
      本研究發現高濃度砷(>0.35 ppm)和泌尿道癌症的相關性,更加確定了烏腳病地區居民的長期健康效應不容忽視。未來則希望進一步辨識出上皮生長因子受體在與砷相關泌尿道癌致病機轉中所扮演的角色,以期能實際應用於烏腳病地區高危險族群尋求早期診斷、早期治療。

      More than half a million residents in Taiwan had drunk water with arsenic levels higher than the current safety standard of 0.05 ppm. Epidemiological studies have demonstrated strong associations between exposure to arsenic and incidence of skin, urinary bladder, and lung cancers in arseniasis-endemic areas throughout the world. Therefore, health effects of arsenic constitute an important public health problem. Studies have reported that in vitro arsenic exposure can induced changes in cells and development of tumor. Furthermore, it had also been found that the arsenic exposures can regulate series of the mitogen-activated protein kinase action and induce over-expression of the epidermal growth factor receptor (EGF-R). However, previous studies in Taiwan have been focused on the blackfoot disease endemic area and Lanyang Basin, and the dose response relationship between arsenic in drinking and the mortality of urinary cancer has not been studied in the Taiwan area as a whole. The objectives of this study are to evaluate the dose-response relationship using data from a large study and to evaluate the feasibility of using epidermal growth factor receptor as a biomarker for identifing susceptible and high-risk individuals of urinary cancer (cancers of the kidney, ureter, bladder, urethra, and prostate) for possible early intervention.
      In 1976 summary measurement results on the arsenic levels in the drinking water from a census survey of wells conducted by the government were published for 311 townships. According to the method applied in the survey, arsenic levels were categorized into three categories: below 0.05 ppm, 0.05-0.35 ppm above 0.35 ppm. Death certificates gathered by the township household registry offices between 1971 and 2000 were reviewed to identify cases of bladder, kidney, ureter, urethra, and prostate cancers. Multivariate linear regression models were applied to assess correlations between arsenic levels in drinking water and mortality of urinary cancer.
      In addition, we have established a study group of cancer patients at a teaching hospital and recruited hospital-based controls. Then, we compared serum levels of EGF-R among patients of different pathological cell-types and used Wilcoxon rank sum test to evaluate the statistical significance of differences. EGF-R levels in sera were determined by enzyme-linked immunosorbent assay (ELISA), and SAS 8.1 was used to conduct statistical analyses.
      During the 30-year period, 8649 male and 4829 female mortality cases of urinary cancer, as well as 4891 mortality cases of prostate cancer were identified. After adjusting for age, in comparison with the reference group (below 0.05 ppm), arsenic levels above 0.35 ppm were associated with a significant increase in the mortality of urinary cancer in both genders. No significant effect was observed for arsenic level between 0.05 and 0.35 ppm, and no association between the arsenic level and prostate cancer was observed.
      In the EGF-R study, we analyzed 55 cases and 12 controls and found that urinary cancer had EGF-R expressions higher than control group (case: 83.97 ± 34.90 fmol/ mL; control: 76.19 ± 17.84 fmol/mL). After matching for sex, age, and smoking state, the EGF-R expression was still higher in the cancer group. In addition, the EGF-R expression in transitional cell carcinoma was slightly higher than that in renal cell carcinoma. No association between arsenic exposure and EGF-R expression was observed.
    Our study found an association between arsenic level in drinking water and urinary cancer and confirmed the health effects of residents in the blackfoot endemic area. Further studies should be conducted to clarify the role of EGFR as a biomarker in the carcinogenic mechanism of urinary cancer, so that it can be applied to identify the high-risk population for possible early intervention.

    第一章 緒論......................................1 第一節 前言......................................1 第二節 研究目的..................................2 第三節 研究的重要性..............................2 第二章 文獻回顧..................................4 第一節 泌尿道癌症之流行病學特徵..................4 第二節 砷的特性及代謝............................4 第三節 砷中毒....................................5 第四節 砷之致癌性................................7 第五節 砷和泌尿道癌症的相關......................8 第六節 上皮生長因子受器.........................10 第三章 材料與方法...............................12 第一節 研究類型.................................12 第二節 研究材料.................................12 第一項 砷暴露與泌尿道癌症之劑量效應關係.........12 第二項 血清中上皮生長因子受器蛋白質之測定.......13 第三節 研究方法.................................13 第一項 癌症死亡率...............................13 第二項 多變項線性回歸模式.......................14 第三項 酵素結合免疫吸附分析法...................14 第四節 統計.....................................16 第四章 結果.....................................17 第一節 砷暴露與泌尿道癌症之劑量效應關係.........17 第一項 砷暴露資料...............................17 第二項 泌尿道癌症死亡率.........................17 第三項 劑量效應關係.............................18 第二節 泌尿道癌症與上皮生長因子受器之關係.......19 第一項 基本資料比較.............................19 第二項 泌尿道癌症與對照組比較...................19 第三項 泌尿道癌症比較...........................20 第五章 討論.....................................22 第一節 砷暴露資料...............................22 第二節 劑量效應關係.............................23 第三節 上皮生長因子受器.........................25 第四節 研究限制.................................27 第一項 劑量效應關係.............................27 第二項 上皮生長因子受器.........................28 第六章 結論與建議...............................29 第一節 結論.....................................29 第二節 建議.....................................29 第七章 參考文獻.................................31

    1. Hutchinson J. Arsenic cancer. Br Med J 2:1280-1281, 1887.
    2. EPA (Environment Protection Agency) . Health Assessment Document for inorganic arsenic: Final Report. Washington: USEPA, 1984.
    3. 羅美棧、沈元肇、林坤金:台灣省地下水含砷量之調查研究 台中縣:台灣省環境衛生實驗所,1977。
    4. Chen CJ, Chuang YC, Lin TM, Wu HY. Malignant neoplasma among residents of a blackfoot disease-endemic area in Taiwan: high arsenic artesian well water and cancers. Cancer Research. 45(11):5895-5899, 1985.
    5. Chiou HY. Hsueh YM. Liaw KF. Horng SF. Chiang MH. Pu YS. Lin JS. Huang CH. Chen CJ. Incidence of internal cancers and ingested inorganic arsenic: a seven-year follow-up study in Taiwan. Cancer Research. 55(6):1296-1300, 1995.
    6. Chiou HY, Chiou ST, Su YH, Chou YL, Tseng CH, Wei ML, Chen CJ. Incidence of transitional cell carcinoma and arsenic in drinking water: a follow-up study of 8102 residents in an arseniasis-endemic area in northeastern Taiwan. American Journal of Epidemiology. 153(5):411–418, 2001.
    7. Cuzick J, Sasien, P, Evan S. Ingested arsenic, keratosis, and bladder cancer. American Journal of Epidemiology. 136(4):417–21, 1992.
    8. Tsuda T. Nagira T. Yamamoto M. Kume Y. An epidemiological study on cancer in certified arsenic poisoning patients in Toroku. Industrial Health. 28(2):53-62, 1990.
    9. Tsuda T, Babazono A, Yamamoto E, Kurumatani N, Mino Y, Ogawa T, Kishi Y, Aoyama H. Ingested arsenic and internal cancer: a historical cohort study followed for 33 years. American Journal of Epidemiology. 141: 198-209, 1995.
    10. Hopenhayn-Rich C, Biggs ML, Fuchs A, Bergoglio R, Tello EE, Nicolli H, Smith AH. Bladder cancer mortality associated with arsenic in drinking water in Argentina. Epidemiology. 7:117-24, 1996.
    11. Smith AH. Goycolea M. Haque R. Biggs ML. Marked increase in bladder and lung cancer mortality in a region of Northern Chile due to arsenic in drinking water. American Journal of Epidemiology. 147:660-9, 1998.
    12. Guo HR, Chiang HS, Hu H, Lipsitz SR, Monson RR. Arsenic in drinking water and incidence of urinary cancers. Epidemiology. 8: 545-550, 1997.
    13. Chen CJ, Wu MM, Lee SS, Wang JD, Cheng SH, Wu HY. Atherogenicity and carcinogenicity of high-arsenic artesian well water: multiple risk factors and related malignant neoplasms of blackfoot disease. Arteriosclerosis. 8: 452-60, 1988.
    14. Wu MM, Kuo TL, Hwang YH, Chen CJ. Dose-response relation between arsenic concentration in well water and mortality from cancers and vascular diseases. American Journal of Epidemiology. 130:1123-1132, 1989.
    15. Brown KG. Chen CJ. Significance of exposure assessment to analysis of cancer risk from inorganic arsenic in drinking water in Taiwan. Risk Analysis. 15(4):475-84, 1995.
    16. Chiang HS, Guo HR, Hong CL, Lin SM, Lee EF. The incidence of bladder cancer in the black foot disease endemic area in Taiwan. British Journal of Urology. 71:274-8, 1993.
    17. Partnen R, Hemminki K, Koskinen H, Luo JC. The detection of increased amounts of the extracellular domain of the epidermal growth factor receptor in serum during carcinigenesis in asbestosis patients. Journal of occupational Medicine. 36:1324-1328, 1994.
    18. Rush V, Klimstra D, Linkov I, Dmitrovsky E. Aberrant expression of p53 or the epidermal growth factor receptor is frequent in early bronchial neoplasia and coexpression precedes squamous cell carcinoma development. Cancer Research. 55:1365-1372, 1995.
    19. Wright C, Mellon K, Johnston P, Lane DP. Expression of mutant p53, c-erbB-2 and the epidermal growth factor receptor in transitional cell carcinoma of the human urinary bladder. British Journal of Cancer 63(6):967-970, 1991.
    20. Simeonova PP. Wang S. Hulderman T. Luster MI. c-Src-dependent activation of the epidermal growth factor receptor and mitogen-activated protein kinase pathway by arsenic. Role in carcinogenesis. Journal of Biological Chemistry. 277(4):2945-50, 2002.
    21. International Agency for Research on Cancer (IARC). Arsenic and its compounds. Vol23. Lyon: IARC, 39-141, 1980.
    22. Tchounwou PB. Wilson B. Ishaque A. Important considerations in the development of public health advisories for arsenic and arsenic-containing compounds in drinking water. Reviews on Environmental Health. 14(4):211-29, 1999.
    23. NIOSH; Criteria Document: Inorganic Arsenic DHEW Pub. NIOSH 75-149, 1975.
    24. USEPA; Ambient Water Quality Criteria Doc: Arsenic EPA 440/5-84-033, 1980.
    25. Foa V. Colombi A. Maroni M. Buratti M. Calzaferri G. The speciation of the chemical forms of arsenic in the biological monitoring of exposure to inorganic arsenic. Science of the Total Environment. 34(3):241-59, 1984.
    26. Thompson DJ. A chemical hypothesis for arsenic methylation in mammals. Chemico-Biological Interactions. 88(2-3):89-14, 1993
    27. Tam GK. Charbonneau SM. Bryce F. Pomroy C. Sandi E. Metabolism of inorganic arsenic (74As) in humans following oral ingestion. Toxicology & Applied Pharmacology. 50(2):319-22, 1979.
    28. Buchet JP. Lauwerys R. Roels H. Urinary excretion of inorganic arsenic and its metabolites after repeated ingestion of sodium metaarsenite by volunteers. International Archives of Occupational & Environmental Health. 48(2):111-8, 1981.
    29. Thompson DJ. A chemical hypothesis for arsenic methylation in mammals. Chemico-Biological Interactions. 88(2-3):89-14, 1993.
    30. World Health Organization. Environmental Health Critertia: Arsenic, 1987.
    31. Agency for Toxic Substances and Disease Registry. Toxicological Profile for Arsenic (Update). Atlanta, GA: Agency for Toxic Substances and Disease Registry. (ATSDR publication TP92/02), 1993.
    32. Kasper ML. Schoenfield L. Strom RL. Theologides A. Hepatic angiosarcoma and bronchioloalveolar carcinoma induced by Fowler's solution. JAMA. 252(24):3407-8, 1984.
    33. Waxman S. Anderson KC. History of the development of arsenic derivatives in cancer therapy. Oncologist. 6 Suppl 2:3-10, 2001.
    34. JO Nriagu, J.M. Azcue, in: J.O. Nriagu (Ed.), Arsenic in the Environment. Part 1: Cycling and Characterization, John Wiley and Sons, Inc, New York, 1990, pp. 1–15.
    35. Michael F. Hughes. Arsenic toxicity and potential mechanisms of action. Toxicology Letters. 133:1-16, 2002.
    36. Buchet JP. Pauwels J. Lauwerys R. Assessment of exposure to inorganic arsenic following ingestion of marine organisms by volunteers. Environmental Research. 66(1):44-51, 1994.
    37. Francesconi KA. Moore EJ. Edmonds JS. Cadmium uptake from seawater and food by the western rock lobster Panulirus cygnus. Bulletin of Environmental Contamination & Toxicology. 53(2):219-23, 1994.
    38. ATSDR (Agency for Toxic Substances and Disease Registry). Toxicological Profile for Arsenic (Update). Atlanta: Agency for Toxic Substances and Disease Registry, 1983.
    39. Landrigm PJ, Arsenic In: Rom WN. Environmental and occupational Medicine 2nd. Little, Boston and Company, Boston. USA. 773-776, 1992.
    40. WHO Arsenic Compounds, Environmental Health Criteria 224, 2nd ed., World Health Organization, Geneva, 2001.
    41. Uuited Nationa Synthesis Report on Arsenic in Drinking Water, 2001.
    42. Rael LT. Ayala-Fierro F. Carter DE. The effects of sulfur, thiol, and thiol inhibitor compounds on arsine-induced toxicity in the human erythrocyte membrane. Toxicological Sciences. 55(2):468-77, 2000.
    43. Hu Y. Su L. Snow ET. Arsenic toxicity is enzyme specific and its affects on ligation are not caused by the direct inhibition of DNA repair enzymes. Mutation Research. 408(3):203-18, 1998.
    44. Mei N. Lee J. Sun X. Xing JZ. Hanson J. Le XC. Weinfeld M. Genetic predisposition to the cytotoxicity of arsenic: the role of DNA damage and ATM. FASEB Journal. 17(15):2310-2, 2003.
    45. Chen KP, Wu HY. Epidemiologic studies on blackfoot disease in Taiwan, China. 6. Effect of the piped water supply on occurrence and disease progress of blackfoot disease. Taiwan i Hsueh Hui Tsa Chih - Journal of the Formosan Medical Association. 68(6):291-5, 1969.
    46. Luchtrath H. The consequences of chronic arsenic poisoning among Moselle wine growers. Pathoanatomical investigations of post-mortem examinations performed between 1960 and 1977. Journal of Cancer Research & Clinical Oncology. 105(2):173-82, 1983.
    47. Borgono PM, Vincent P, Venturino H, et al. Arsenic in the drinking water of the city of Antofagasta: Epidemiological and clinical study before and after the installation of the treatment plant. Environmental Health Perspective. 19: 103-5, 1977.
    48. Feng Z. Xia Y. Tian D. Wu K. Schmitt M. Kwok RK. Mumford JL. DNA damage in buccal epithelial cells from individuals chronically exposed to arsenic via drinking water in Inner Mongolia, China. Anticancer Research. 21(1A):51-7, 2001.
    49. Tseng WP, Chu HM, How SW, Fong JM, Lin CS. Yeh S. Prevalence of skin cancer in an endemic area of chronic arsenicism in Taiwan. Journal of the National Cancer Institute. 40(3):453-63, 1968.
    50. Chen CJ, Chuang YC, You SL, Lin TM, Wu HY. A retrospective study on malignant neoplasms of bladder, lung and liver in blackfoot disease endemic area in Taiwan. British Journal of Cancer. 53(3):399-405, 1986.
    51. Liu Y, Guyton KZ, Gorospe M, Xu Q, Lee JC, and Holbrook NJ. Differential activation of ERK, JNK/SAPK and P38/CSBP/RK map kinase family members during the cellular response to arsenic. Free Radical Biology & Medicine. 21:771-781, 1996.
    52. Guo HR, Chen CJ, Greene HL. Arsenic in drinking water and Cancers:A descriptive review of Taiwan studies. Environmental Geochemistry Health. s16: 129-138, 1994.
    53. See www.epa.gov/safewater/ars/ars1.html.
    54. U.S. Environmental Protection Agency. Special report on ingested inorganic arsenic. Washington, DC: EPA, 1988.
    55. Smith AH, Hopenhayn-Rich C, Bates MN, Goeden HM, Hertz-Picciotto I, Duggan HM, Wood R, Kosnett MJ, Smith MT. Cancer risks from arsenic in drinking water. Environmental Health Perspectives. 97:259-67, 1992.
    56. World Health Organization, Guideline for Drinking Water Quality, Vol 1, Recommendations (World Health Organization, Geneva, 1993).
    57. See www.house.gov/science/ets/oct04/ets_charter_100401.htm.
    58. See www.niea.gov.tw/niea/WATER/W31051A.htm.
    59. Karagas MR, Tosteson TD, Blum J. Morris JS, Baron JA. Klaue B. Design of an epidemiologic study of drinking water arsenic exposure and skin and bladder cancer risk in a U.S. population. Environmental Health Perspectives. 106 Suppl 4:1047-50, 1998.
    60. Steinmaus C, Yuan Y, Bates MN, Smith AH. Case-control study of bladder cancer and drinking water arsenic in the western United States. American Journal of Epidemiology. 158(12):1193-201, 2003.
    61. Chen YC, Su HJ, Guo YL, Hsueh YM, Smith TJ, Ryan LM, Lee MS. Christiani DC. Arsenic methylation and bladder cancer risk in Taiwan. Cancer Causes & Control. 14(4):303-10, 2003.
    62. Hopenhayn-Rich C, Biggs ML, Smith AH. Lung and kidney cancer mortality associated with arsenic in drinking water in Cordoba, Argentina. International Journal of Epidemiology. 27(4):561-9, 1998.
    63. Bates MN, Rey OA, Biggs ML, Hopenhayn C, Moore LE, Kalman D, Steinmaus C, Smith AH. Case-control study of bladder cancer and exposure to arsenic in Argentina. American Journal of Epidemiology. 159(4):381-9, 2004.
    64. See www.doh.gov.tw/statistic/data/死因摘要/92年/92.htm.
    65. Cohen S. Nobel lecture. Epidermal growth factor. Bioscience Reports. 6(12):1017-28, 1986.
    66. Coussens L. Yang-Feng TL. Liao YC. Chen E. Gray A. McGrath J. Seeburg PH. Libermann TA. Schlessinger J. Francke U. et al. Tyrosine kinase receptor with extensive homology to EGF receptor shares chromosomal location with neu oncogene. Science. 230(4730):1132-9, 1985.
    67. Wells A. Molecules in focus EGF receptor. International Journal of Biochemistry and Cell Biology. 31:637-643, 1999.
    68. Cavigelli M. Li WW. Lin A. Su B. Yoshioka K. Karin M. The tumor promoter arsenite stimulates AP-1 activity by inhibiting a JNK phosphatase. EMBO Journal. 15(22):6269-79, 1996.
    69. Chen W, Martindale JL, Holbrook NJ, and Lin Y. Tumor promoter arsenite activates extracellular signal-related kinase through a signaling pathway mediated by epidermal growth factor receptor and shc. Mol.Cell Biol. Chem. 18: 5178-5188, 1998.
    70. Walter SD. The ecologic method in the study of environmental health. I. Overview of the method. Environmental Health Perspectives. 94:61-5, 1991.
    71. 蔡哲亮 大高雄地區自來水管線清洗工程 自來水會刊雜誌 22(4): 77-79, 2003.
    72. Mayer DR. Kosmus W. Pogglitsch H. Mayer D. Beyer W. Essential trace elements in humans. Serum arsenic concentrations in hemodialysis patients in comparison to healthy controls. Biological Trace Element Research. 37(1):27-38, 1993.
    73. Marcus WL, Rispin AS. Threshold carcinogenicity using arsenic as an example. In: Cothern CR, Mehlman MA, Marcus WL eds. Advance Modern Environmental Toxicology, Vol. XV, Risk Assessment and Risk Management of Industrial and Environmental Chemicals. Princeton: Princeton Publishing Company, 1988.
    74. Uthus EO. Evidence for arsenic essentiality. Environ Geochem Health 14:55-58, 1992.
    75. Marczynski B. Carcinogenesis as the result of the deficiency of some essential trace elements. Medical Hypotheses. 26(4):239-49, 1988.
    76. Chen CJ. Wang CJ. Ecological correlation between arsenic level in well water and age-adjusted mortality from malignant neoplasms. Cancer Research. 50:5470-4, 1990.
    77. Lewis DR. Southwick JW. Ouellet-Hellstrom R. Rench J. Calderon RL. Drinking water arsenic in Utah: A cohort mortality study. Environmental Health Perspectives. 107:359-65, 1990.
    78. 郭浩然:飲水含砷量與膀胱癌死亡率的劑量效應關係。 中華衛誌 18(6) 附冊1:134-139, 1999。
    79. Tseng CH. Peripheral vascular disease and microcirculatory defects among residents in the endemic areas of blackfoot disease. Ph.D. Dissertation of Graduate Institute of Public Health, Collage of Public Health, National Taiwan University, Taipei, Taiwan, 1995.
    80. Chiou, HY, Huang, WI, Su, CL, Chang, SF, Hsu, YH, Chen, CJ Dose–response relationship between prevalence of cerebrovascular disease and ingested inorganic arsenic. Stroke. 28:1717–1723, 1997.
    81. Rho O, Beltran LM, Gimenez-Conti IB, DiGiovanni J. Altered expression of the epidermal growth factor receptor and transformationing growth factor-alpha during multistage skin carcinogenesis in SENCAR mice. Molecular Carcinogenesis. 11:19-28, 1994.
    82. Salomon DS. Brandt R. Ciardiello F. Normanno N. Epidermal growth factor-related peptides and their receptors in human malignancies. Critical Reviews in Oncology-Hematology. 19(3):183-232, 1995.
    83. Wu X. Fan Z. Masui H. Rosen N. Mendelsohn J. Apoptosis induced by an anti-epidermal growth factor receptor monoclonal antibody in a human colorectal carcinoma cell line and its delay by insulin. Journal of Clinical Investigation. 95(4):1897-905, 1995.
    84. Karnes WE, Weller SG, Adjei PN, Kottke TJ, Glenn KS, Gores GJ, Kaufmann SH. Inhibition of epidermal growth factor receptor kinase induces protease-dependent apoptosis in human colon cancer cells. Gastroenterology. 114:930-939, 1998.
    85. de Jong JS. van Diest PJ. van der Valk P. Baak JP. Expression of growth factors, growth-inhibiting factors, and their receptors in invasive breast cancer. II: Correlations with proliferation and angiogenesis. Journal of Pathology. 184(1):53-7, 1998.
    86. Sako Y. Minoghchi S. Yanagida T. Single-molecule imaging of EGFR signalling on the surface of living cells. Nature Cell Biology. 2(3):168-72, 2000.
    87. Kumar RR. Meenakshi A. Sivakumar N. Enzyme immunoassay of human epidermal growth factor receptor (hEGFR). Human Antibodies. 10(3-4):143-7, 2001.
    88. Pfeiffer P. Nexo E. Bentzen SM. Clausen PP. Andersen K. Rose C. Enzyme-linked immunosorbent assay of epidermal growth factor receptor in lung cancer: comparisons with immunohistochemistry, clinicopathological features and prognosis. British Journal of Cancer. 78(1):96-9, 1998.
    89. Choi JH. Oh JY. Ryu SK. Kim SJ. Lee NY. Kim YS. Yi SY. Shim KS. Han WS. Detection of epidermal growth factor receptor in the serum of gastric carcinoma patients. Cancer. 79(10):1879-83, 1997.
    90. Oh MJ. Choi JH. Kim IH. Lee YH. Huh JY. Park YK. Lee KW. Chough SY. Joo KS. Ku BS. Saw HS. Detection of epidermal growth factor receptor in the serum of patients with cervical carcinoma. Clinical Cancer Research. 6(12):4760-3, 2000.
    91. Gazzaniga P. Gradilone A. Frati L. Agliano AM. Epidermal growth factor receptor mRNA expression in peripheral blood of bladder cancer patients: a potential marker to detect treatment failure. Clinical Cancer Research. 7(12):4288-9, 2001.
    92. 行政院衛生署:中華民國癌症死亡率分佈地圖集。 民國七十一年至八十年。台北市:行政院衛生署 p82-85, 1996。

    下載圖示 校內:2005-08-02公開
    校外:2005-08-02公開
    QR CODE