簡易檢索 / 詳目顯示

研究生: 柯志衡
Ko, Chih-Heng
論文名稱: 發展雙操縱器於微物件組裝之應用
Development of dual manipulators for microassembly applications
指導教授: 張仁宗
Chang, Ren-Jung
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 114
中文關鍵詞: 雙操縱器微組裝協調控制物件阻塞
外文關鍵詞: Dual manipulators, microassembly, coordination control, object jamming
相關次數: 點閱:120下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 對於許多精細工作來說,在顯微鏡頭下微物件組裝為一項重要的任務。本文利用雙微操縱器抓取、操控微物件以增加微物件組裝之功能性及靈活性。為了達成雙微操縱器進行微組裝任務,首先對雙微操縱器的系統分析與測試建立模型,並搭配主從式協調控制進行微組裝之工作。為了避免進行微組裝時物件阻塞的情況,建立物理模型分析組裝時的最大允許角度。自動組裝過程使用非正規化小波熵聚焦演算法及聚焦機構以完成操縱臂之垂直高度定位,並搜尋特徵點位置實現微組裝,本研究最終實現半徑295μm之金屬圓柱組裝於半徑400μm之玻璃管內。

    For many sophisticated works, the assembly of micro objects under microscope is an important task. In this thesis, by using dual micro manipulators to grab and manipulate micro objects is to achieve better functionality and flexibility in the microassembly operation. For the microassembly by utilizing dual micromanipulators, the first step is to analyze and test the model of dual micro-manipulators system and cooperate with master-slave coordination control for microassembly work. In order to avoid the object jamming situation during assembling process, a physical model is established to analyze the maximum allowable angle during assembly operation. The automatic assembling process utilizes non-normalized Shannon wavelet entropy algorithm and focus mechanism to achieve vertical positioning of manipulator arm, and search feature points to realize the micro assembly task. The present research finally achieves the goal of assembling the metal cylinder of radius 295μm within a glass radius of 400μm.

    摘要 I ABSTRACT II 致謝 V 目錄 VI 表目錄 VIII 圖目錄 IX 符號表 XII 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 2 1-2.1 微組裝系統 2 1-2.2 雙機械手臂系統 8 1-2.3 雙機械手臂的協調控制 14 1-3 研究目標與方法 17 1-4 本文結構 19 第二章 微組裝子系統功能與實體設計 20 2-1 微組裝子系統功能設計 21 2-1.1 問題定義 22 2-1.2 子系統要求與限制 22 2-2 微組裝系統結構概念設計 23 2-3 元件設計 24 2-4 子系統實體設計 27 2-5 本章總結 28 第三章 雙手臂分析與測試 29 3-1 協調控制 29 3-2 雙手臂分析與測試 31 3-2.1 線性非時變檢驗 31 3-2.2 動態測試 38 3-2.3 手臂延遲時間 43 3-3 主從式協調控制 45 3-4 本章總結 52 第四章 微組裝靜力分析 53 4-1 物件與開孔間關係 53 4-2 靜力分析 55 4-2.1 空氣環境中靜力分析 56 4-2.2 液體環境中靜力分析 60 4-3 模擬與實驗結果 62 4-4 本章總結 70 第五章 物件組裝操作與測試 71 5-1 系統整合 71 5-2 硬體整合 71 5-3 人機介面 78 5-4 影像校正 81 5-5 微物件組裝 81 5-5.1 手臂z軸高度定位 82 5-5.2 物件組裝 90 5-6 失效分析 100 5-7 本章總結 102 第六章 結論與未來展望 103 6-1 結論 103 6-2 未來展望 104 參考文獻 105 附錄A步進馬達與驅動電路 108 附錄B介面卡技術資料 112

    [1]F. Arai, T. Sugiyama, and T. Fukuda, “Micro tri-axial force sensor for 3D bio-micromanipulation,” Proceedings IEEE International Conference on Robotics and Automation, v 4, pp. 2744-2749, 1999.
    [2]B. Nelson, Y. Zhou, and B. Vikramaditya, “Sensor-based microassembly of hybrid MEMS devices,” Control System, IEEE, v 18, pp. 35-45, 1998.
    [3]G. Yang, J. A. Gaines, and B. J. Nelson, “A supervisory wafer-level 3D microassembly system for hybrid MEMS fabrication,” Journal of Intelligent and Robotic Systems, v 37, pp. 43-68, 2003.
    [4] M. Weck and C. Peschke, “Equipment technology for flexible and automated micro-assembly,” Microsystem Technologies, v 10, pp. 241-246, 2004.
    [5]Z. Lu, P. C. Y. Chen, and A. Ganapathy, “A force-feedback control system for micro-assembly,” Journal of Micromechanics and Microengineering, v 16, pp. 1861-1868, 2006.
    [6]Eisinberg, A. Menciassi, and P. Dario, “Teleoperated assembly of a micro-lens system by means of a micro-manipulation workstation,” Assembly Automation, v 27, pp. 123-133, 2007.
    [7]J. Wang, A. Liu and X. Tao, “Microassembly of micropeg and hole using uncalibrated visual servoing method,” Precision Engineering, v 32, pp. 173-181, 2008.
    [8]R. J. Chang and C. C. Chen, “Using microgripper in development of automatic adhesive glue transferring and binding microassembly system,” Engineering, 2, pp. 1-11, 2010.
    [9]R. J. Chang, C. Y. Lin and P. S. Lin, “Visual-based automation of peg-in-hole microassembly process,” Journal of Manufacturing Science and Engineering, v 133, n 041015, pp. 1-12, 2011.
    [10]J. Y. S. Luh and Y. F. Zheng, “Constrained relations between two coordinated industrial robots for motion control,” International Journal of Robotics Research, v 6, n 3, pp. 60-70, 1987.
    [11]J. M. Tao, J. Y. S. Luh, and Y. F. Zheng, “Compliant coordination control of two moving industrial robots,” IEEE Transactions on Robotics and Automation, v 6, n 3, pp. 322-330, 1990.
    [12]D. J. Cox, K. Rackers, and D. Tesar, “Cooperative manipulation experiments using a dual-arm robot,” IECON Proceedings, Industrial Electronics Conference, v 1, pp. 104-109, 1995.
    [13]T. Tanikawa, T. Arai, and P. Ojala, “Two-Finger Micro Hand,” Proceedings of IEEE International Conference on Robotics and Automation, pp. 1674-1679, 1995.
    [14]T. Mukaiyama, K. Kim, and Y. Hori, “Implementation of cooperative manipulation using decentralized robust position/force control,” International Workshop on Advanced Motion Control, AMC, v 2, pp. 529-534, 1996.
    [15]T. Tanikawa and T. Arai, “Development of a micro-manipulation system having a two-fingered micro-hand,” IEEE Transactions on Robotics and Automation, v 15, n 1, pp. 152-162, 1999.
    [16]G. Hwang, N. Ando, P. Szemes, and H. Hashimoto, “Development of single-master multi-slave tele-micromanipulation system,” IECON Proceedings (Industrial Electronics Conference), v1, pp. 690-695, 2004.
    [17]Ferreira, C. Cassier, and S. Hirai, “Automatic microassembly system assisted by vision servoing and virtual reality,” IEEE/ASME Transactions on Mechatronics, v 9, n 2, pp. 321-333, 2004.
    [18]H. Xie and S. Regnier, “Three-dimensional automated micromanipulation using a nanotip gripper with multi-feedback,” Journal of Micromechanics and Microengineering, v 19, n 7, 2009.
    [19]H. K. Chu, J. K. Mills, and W. L. Cleghorn, “Dual-arm micromanipulation and handling of objects through visual images,” Proceedings of IEEE International Conference on Mechatronics and Automation, pp. 813-818, 2012.
    [20]M. H. Raibert and J. J. Craig, “Hybrid position/force control of manipulators,” Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, v 103, n 2, pp. 126-133, 1981.
    [21]S. Hayati, “Hybrid position/force control of multi-arm cooperating robots,” Proceedings IEEE International Conference on Robotics and Automation, pp. 82-89, 1986.
    [22]M. Uchiyama and P. Dauchez, “A symmetric hybrid position/force control scheme for the coordination of two robots,” Proceedings IEEE International Conference on Robotics and Automation, pp. 350-356, 1988.
    [23]N. Hogan, “Impedance control part 1- Theory,” Transaction of ASME, Journal of Dynamics Systems Measurement and Control, v107, pp. 1, 1985.
    [24]N. Hogan, “Impedance control part 2- Theory,” Transaction of ASME, Journal of Dynamics Systems Measurement and Control, v107, pp. 8, 1985.
    [25]N. Hogan, “Impedance control part 3- Theory,” Transaction of ASME, Journal of Dynamics Systems Measurement and Control, v 107, pp. 17, 1985.
    [26]C.D. Kopf and T. Yabuta, “Experimental comparison of master/slave and hybrid two-arm position/force control,” Proceedings IEEE International Conference on Robotics and Automation, pp. 1633-1637, 1988.
    [27]D. E. Whitney, “Quasi-static assembly of compliantly supported rigid parts,” Journal of Dynamic Systems, Measurement, and Control, v 104, pp. 65-77, 1982.
    [28]王永聯, “平面微型撓性機械之分析設計與製造”, 國立成功大學機械工程學系博士論文, April, 1999.
    [29]陳昭安, “雙顯微操縱器於虛擬環境下之物件搬運控制”, 國立成功大學機械工程學系碩士論文, June, 2006.
    [30]K. I. Kim and Y. F. Zheng, “Two strategies of position and force control for two industrial robots handling a single object,” Robotics, v 5, n 4, pp. 395-403, 1989.
    [31]吳政達, “虛擬場景輔助進給與操縱遠端液體環境中”, 國立成功大學機械工程學系碩士論文, June, 2009.
    [32]T. Jayasree, D. Devaraj, and R. Sukanesh, “Classification of Transients using Wavelet Based Entropy and Radial Basis Neural Networks,” International Journal of Computer and Electrical Engineering, v 1, n 5, 2009.
    [33]簡佑丞, “影像伺服追蹤液體環境中之微粒子”, 國立成功大學機械工程學系碩士論文, June, 2011.

    下載圖示
    校外:立即公開
    QR CODE